Unraveling conditions for W-shaped interface and undercooled melts in Cz-Si growth: A smart approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00600768" target="_blank" >RIV/67985807:_____/24:00600768 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jcrysgro.2024.127897" target="_blank" >https://doi.org/10.1016/j.jcrysgro.2024.127897</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2024.127897" target="_blank" >10.1016/j.jcrysgro.2024.127897</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unraveling conditions for W-shaped interface and undercooled melts in Cz-Si growth: A smart approach
Popis výsledku v původním jazyce
In Cz-Si growth, concave and W-shaped solid–liquid interfaces and undercooled melts are primary contributors to the degradation of crystal quality, particularly structure loss, defect generation, non-uniform dopant distribution, and crystal twisting, making their avoidance crucial. We employed a classification tree machine learning approach to investigate the importance of 15 process and furnace design parameters and their critical ranges for the formation of various types of W-shaped interfaces and undercooled melts at different scales, both in dimensional and dimensionless forms, and across a wide range of process conditions. Moreover, symbolic regression was used to predict minimal melt temperature based on the aforementioned inputs. Training data were obtained by CFD modeling. The classification tree for combined output identified the Grashof, Reynolds for crystal, and Stefan numbers, along with the percentage of silicon solidified, as the most decisive inputs. Symbolic regression for the temperature of undercooled melt highlighted crucible diameter, pulling rate, and the power of the bottom heater as key parameters.
Název v anglickém jazyce
Unraveling conditions for W-shaped interface and undercooled melts in Cz-Si growth: A smart approach
Popis výsledku anglicky
In Cz-Si growth, concave and W-shaped solid–liquid interfaces and undercooled melts are primary contributors to the degradation of crystal quality, particularly structure loss, defect generation, non-uniform dopant distribution, and crystal twisting, making their avoidance crucial. We employed a classification tree machine learning approach to investigate the importance of 15 process and furnace design parameters and their critical ranges for the formation of various types of W-shaped interfaces and undercooled melts at different scales, both in dimensional and dimensionless forms, and across a wide range of process conditions. Moreover, symbolic regression was used to predict minimal melt temperature based on the aforementioned inputs. Training data were obtained by CFD modeling. The classification tree for combined output identified the Grashof, Reynolds for crystal, and Stefan numbers, along with the percentage of silicon solidified, as the most decisive inputs. Symbolic regression for the temperature of undercooled melt highlighted crucible diameter, pulling rate, and the power of the bottom heater as key parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Crystal Growth
ISSN
0022-0248
e-ISSN
1873-5002
Svazek periodika
648
Číslo periodika v rámci svazku
December 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
127897
Kód UT WoS článku
001322235000001
EID výsledku v databázi Scopus
2-s2.0-85204676333