Entropy techniques for robust management decision making in high-dimensional data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00602743" target="_blank" >RIV/67985807:_____/24:00602743 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10490141
Výsledek na webu
<a href="https://doi.org/10.5937/sjm19-48723" target="_blank" >https://doi.org/10.5937/sjm19-48723</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5937/sjm19-48723" target="_blank" >10.5937/sjm19-48723</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Entropy techniques for robust management decision making in high-dimensional data
Popis výsledku v původním jazyce
Entropy, a key measure of chaos or diversity, has recently found intriguing applications in the realm of management science. Traditional entropy-based approaches for data analysis, however, prove inadequate when dealing with high-dimensional datasets. In this paper, a novel uncertainty coefficient based on entropy is proposed for categorical data, together with a pattern discovery method suitable for management applications. Furthermore, we present a robust fractal-inspired technique for estimating covariance matrices in multivariate data. The efficacy of this method is thoroughly examined using three real datasets with economic relevance. The results demonstrate the superior performance of our approach, even in scenarios involving a limited number of variables. This suggests that managerial decision-making processes should reflect the inherent fractal structure present in the given multivariate data. The work emphasizes the importance of considering fractal characteristics in managerial decision-making, thereby advancing the applicability and effectiveness of entropy-based methods in management science.
Název v anglickém jazyce
Entropy techniques for robust management decision making in high-dimensional data
Popis výsledku anglicky
Entropy, a key measure of chaos or diversity, has recently found intriguing applications in the realm of management science. Traditional entropy-based approaches for data analysis, however, prove inadequate when dealing with high-dimensional datasets. In this paper, a novel uncertainty coefficient based on entropy is proposed for categorical data, together with a pattern discovery method suitable for management applications. Furthermore, we present a robust fractal-inspired technique for estimating covariance matrices in multivariate data. The efficacy of this method is thoroughly examined using three real datasets with economic relevance. The results demonstrate the superior performance of our approach, even in scenarios involving a limited number of variables. This suggests that managerial decision-making processes should reflect the inherent fractal structure present in the given multivariate data. The work emphasizes the importance of considering fractal characteristics in managerial decision-making, thereby advancing the applicability and effectiveness of entropy-based methods in management science.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Serbian Journal of Management
ISSN
1452-4864
e-ISSN
1452-4864
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
13
Strana od-do
471-483
Kód UT WoS článku
001376541500012
EID výsledku v databázi Scopus
2-s2.0-85211383010