Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10247518" target="_blank" >RIV/61989100:27510/21:10247518 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0268401221000505?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0268401221000505?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijinfomgt.2021.102357" target="_blank" >10.1016/j.ijinfomgt.2021.102357</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management

  • Popis výsledku v původním jazyce

    One type of data-driven innovations in management is data-driven decision making. Confronted with a big amount of data external and internal to their organization&apos;s managers strive for predictive data analysis that enables insight into the future, but even more for prescriptive ones that use algorithms to prepare recommendations for current and future actions. Most of the decision-making techniques use deterministic machine learning (ML) techniques but unfortunately, they do not take into account the variety and volatility of decision-making situations and do not allow for a more flexible approach, i.e., adjusted to changing environmental conditions or changing management priorities. A way to better adapt ML tools to the needs of decision-makers is to use swarm intelligence ML (SIML) methods that provide a set of alternative solutions that allow matching actions with the current decision-making situation. Thus, applying SIML methods in managerial decision-making is conceptualized as a company capability as it allows for systematic alignment of allocating resources decisions vis-a -vis changing decision-making conditions. The study focuses on the customer churn management as the area of applying SIML techniques to managerial decision-making. The objectives are twofold: to present the specific features and the role of SIML methods in customer churn management and to test if a modified SIML algorithm may increase the effectiveness of churn-related segmentation and improve decision-making process. The empirical study uses publicly available customer data related to digital markets to test if and how SIML methods facilitate managerial decision-making with regard to customers potentially leaving the company in the context of changing conditions. The research results are discussed with regard to prior studies on applying ML techniques to decision-making and customer churn management studies. We also discuss the place of presented analytical approach in the literature on dynamic capabilities, especially big data-driven capabilities. (C) 2021 Elsevier Ltd

  • Název v anglickém jazyce

    Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management

  • Popis výsledku anglicky

    One type of data-driven innovations in management is data-driven decision making. Confronted with a big amount of data external and internal to their organization&apos;s managers strive for predictive data analysis that enables insight into the future, but even more for prescriptive ones that use algorithms to prepare recommendations for current and future actions. Most of the decision-making techniques use deterministic machine learning (ML) techniques but unfortunately, they do not take into account the variety and volatility of decision-making situations and do not allow for a more flexible approach, i.e., adjusted to changing environmental conditions or changing management priorities. A way to better adapt ML tools to the needs of decision-makers is to use swarm intelligence ML (SIML) methods that provide a set of alternative solutions that allow matching actions with the current decision-making situation. Thus, applying SIML methods in managerial decision-making is conceptualized as a company capability as it allows for systematic alignment of allocating resources decisions vis-a -vis changing decision-making conditions. The study focuses on the customer churn management as the area of applying SIML techniques to managerial decision-making. The objectives are twofold: to present the specific features and the role of SIML methods in customer churn management and to test if a modified SIML algorithm may increase the effectiveness of churn-related segmentation and improve decision-making process. The empirical study uses publicly available customer data related to digital markets to test if and how SIML methods facilitate managerial decision-making with regard to customers potentially leaving the company in the context of changing conditions. The research results are discussed with regard to prior studies on applying ML techniques to decision-making and customer churn management studies. We also discuss the place of presented analytical approach in the literature on dynamic capabilities, especially big data-driven capabilities. (C) 2021 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Information Management

  • ISSN

    0268-4012

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    102357

  • Kód UT WoS článku

    000684843400009

  • EID výsledku v databázi Scopus

    2-s2.0-85105346840