Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F21%3A63527178" target="_blank" >RIV/70883521:28120/21:63527178 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0040162521001980?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040162521001980?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.techfore.2021.120766" target="_blank" >10.1016/j.techfore.2021.120766</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance

  • Popis výsledku v původním jazyce

    Big data analytics (BDA) is a revolutionary approach for sound decision-making in organizations that can lead to remarkable changes in transforming and supporting the circular economy (CE). However, extant literature on BDA capability has paid limited attention to understanding the enabling role of data-driven insights for sup porting decision-making and, consequently, enhancing CE performance. We argue that firms drive decision making quality through data-driven insights, business intelligence and analytics (BI&amp;A), and BDA capability. In this study, we empirically investigated the association of BDA capability with CE performance and examined the mediating role of data-driven insights in the relationship between BDA capability and decision-making. Data were collected from 109 Czech manufacturing firms, and partial least squares structural equation modeling was applied to analyze the data. The results reveal that BDA capability and BI&amp;A are positively associated with decision-making quality. This effect is stronger when the manufacturer utilizes data-driven insights. The results demonstrate that BDA capability drives decision-making quality in organizations, and data-driven insights do not mediate this relationship. BI&amp;A is associated with decision-making quality through data-driven insights. These findings offer important insights to managers, as they can act as a reference point for developing data-driven insights with the CE paradigm in organizations.

  • Název v anglickém jazyce

    Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance

  • Popis výsledku anglicky

    Big data analytics (BDA) is a revolutionary approach for sound decision-making in organizations that can lead to remarkable changes in transforming and supporting the circular economy (CE). However, extant literature on BDA capability has paid limited attention to understanding the enabling role of data-driven insights for sup porting decision-making and, consequently, enhancing CE performance. We argue that firms drive decision making quality through data-driven insights, business intelligence and analytics (BI&amp;A), and BDA capability. In this study, we empirically investigated the association of BDA capability with CE performance and examined the mediating role of data-driven insights in the relationship between BDA capability and decision-making. Data were collected from 109 Czech manufacturing firms, and partial least squares structural equation modeling was applied to analyze the data. The results reveal that BDA capability and BI&amp;A are positively associated with decision-making quality. This effect is stronger when the manufacturer utilizes data-driven insights. The results demonstrate that BDA capability drives decision-making quality in organizations, and data-driven insights do not mediate this relationship. BI&amp;A is associated with decision-making quality through data-driven insights. These findings offer important insights to managers, as they can act as a reference point for developing data-driven insights with the CE paradigm in organizations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Technological Forecasting &amp; Social Change

  • ISSN

    0040-1625

  • e-ISSN

  • Svazek periodika

    168 (2021)

  • Číslo periodika v rámci svazku

    120766

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000651337500003

  • EID výsledku v databázi Scopus

    2-s2.0-85110265219