Artificial intelligence-driven decision making and firm performance: a quantitative approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04130081%3A_____%2F24%3AN0000021" target="_blank" >RIV/04130081:_____/24:N0000021 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.emerald.com/insight/content/doi/10.1108/md-10-2023-1966/full/html" target="_blank" >https://www.emerald.com/insight/content/doi/10.1108/md-10-2023-1966/full/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1108/MD-10-2023-1966" target="_blank" >10.1108/MD-10-2023-1966</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial intelligence-driven decision making and firm performance: a quantitative approach
Popis výsledku v původním jazyce
Purpose The purpose of this study is to investigate the relationship between artificial intelligence (AI) and decision making in the development of AI-related capabilities. We investigate if and how AI-driven decision making has an impact on firm performance. We also investigate the role played by environmental dynamism in the development of AI capabilities and AI-driven decision making. Design/methodology/approach We surveyed 346 managers in the United States using established scales from the literature and leveraged p modelling to analyse the data. Findings Results indicate that AI-driven decision making is positively related to firm performance and that big data-powered AI positively influences AI-driven decision making. Moreover, there is a positive relationship between big data-powered AI and the development of AI capability within a firm. It is also found that the control variables of firm size and age do not significantly affect firm performance. Finally, environmental dynamism does not have a positive and significant moderating effect on the path connecting big data-powered AI and AI-driven decision making, while it exerts a positive moderating effect on the development of AI capability to strengthen AI-driven decision making. Originality/value These findings extend the resource-based view by highlighting the capabilities developed within the firm to manage big data-powered AI. This research also provides theoretically grounded guidance to managers wanting to align their AI-driven decision making with superior firm performance.
Název v anglickém jazyce
Artificial intelligence-driven decision making and firm performance: a quantitative approach
Popis výsledku anglicky
Purpose The purpose of this study is to investigate the relationship between artificial intelligence (AI) and decision making in the development of AI-related capabilities. We investigate if and how AI-driven decision making has an impact on firm performance. We also investigate the role played by environmental dynamism in the development of AI capabilities and AI-driven decision making. Design/methodology/approach We surveyed 346 managers in the United States using established scales from the literature and leveraged p modelling to analyse the data. Findings Results indicate that AI-driven decision making is positively related to firm performance and that big data-powered AI positively influences AI-driven decision making. Moreover, there is a positive relationship between big data-powered AI and the development of AI capability within a firm. It is also found that the control variables of firm size and age do not significantly affect firm performance. Finally, environmental dynamism does not have a positive and significant moderating effect on the path connecting big data-powered AI and AI-driven decision making, while it exerts a positive moderating effect on the development of AI capability to strengthen AI-driven decision making. Originality/value These findings extend the resource-based view by highlighting the capabilities developed within the firm to manage big data-powered AI. This research also provides theoretically grounded guidance to managers wanting to align their AI-driven decision making with superior firm performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MANAGEMENT DECISION
ISSN
0025-1747
e-ISSN
1758-6070
Svazek periodika
—
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001240267500001
EID výsledku v databázi Scopus
2-s2.0-85195277913