Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F18%3A00497137" target="_blank" >RIV/67985815:_____/18:00497137 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/18:10388227
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevD.97.084023" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.97.084023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.97.084023" target="_blank" >10.1103/PhysRevD.97.084023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition
Popis výsledku v původním jazyce
The Mathisson-Papapetrou-Dixon (MPD) equations, providing the pole-dipole description of spinning test particles in general relativity, have to be supplemented by a condition specifying the worldline that will represent the history of the studied body. It has long been thought that the Mathisson-Pirani (MP) spin condition-unlike other major choices made in the literature-does not yield an explicit momentum-velocity relation. We derive here the desired (and very simple) relation and show that it is in fact equivalent to the MP condition. We clarify the apparent paradox between the existence of such a definite relation and the known fact that the MP condition is degenerate (does not specify a unique worldline), thus shedding light on some conflicting statements made in the literature. We then show how, for a given body, this spin condition yields infinitely many possible representative worldlines, and derive a detailed method how to switch between them in a curved spacetime. The MP condition is a convenient choice in situations when it is easy to recognize its “nonhelical” solution, as exemplified here by bodies in circular orbits and in radial fall in the Schwarzschild spacetime.
Název v anglickém jazyce
Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition
Popis výsledku anglicky
The Mathisson-Papapetrou-Dixon (MPD) equations, providing the pole-dipole description of spinning test particles in general relativity, have to be supplemented by a condition specifying the worldline that will represent the history of the studied body. It has long been thought that the Mathisson-Pirani (MP) spin condition-unlike other major choices made in the literature-does not yield an explicit momentum-velocity relation. We derive here the desired (and very simple) relation and show that it is in fact equivalent to the MP condition. We clarify the apparent paradox between the existence of such a definite relation and the known fact that the MP condition is degenerate (does not specify a unique worldline), thus shedding light on some conflicting statements made in the literature. We then show how, for a given body, this spin condition yields infinitely many possible representative worldlines, and derive a detailed method how to switch between them in a curved spacetime. The MP condition is a convenient choice in situations when it is easy to recognize its “nonhelical” solution, as exemplified here by bodies in circular orbits and in radial fall in the Schwarzschild spacetime.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000430061300011
EID výsledku v databázi Scopus
2-s2.0-85046530583