Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hamiltonians and canonical coordinates for spinning particles in curved space-time

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F19%3A00519763" target="_blank" >RIV/67985815:_____/19:00519763 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1361-6382/ab002f" target="_blank" >https://doi.org/10.1088/1361-6382/ab002f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6382/ab002f" target="_blank" >10.1088/1361-6382/ab002f</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hamiltonians and canonical coordinates for spinning particles in curved space-time

  • Popis výsledku v původním jazyce

    The spin-curvature coupling as captured by the so-called Mathisson–Papapetrou–Dixon (MPD) equations is the leading order effect of the finite size of a rapidly rotating compact astrophysical object moving in a curved background. It is also a next-to-leading order effect in the phase of gravitational waves emitted by extreme-mass-ratio inspirals (EMRIs), which are expected to become observable by the LISA space mission. Additionally, exploring the Hamiltonian formalism for spinning bodies is important for the construction of the so-called effective-one-body waveform models that should eventually cover all mass ratios.nThe MPD equations require supplementary conditions determining the frame in which the moments of the body are computed. We review various choices of these supplementary spin conditions and their properties. Then, we give Hamiltonians either in proper-time or coordinate-time parametrization for the Tulczyjew-Dixon, Mathisson-Pirani, and Kyrian-Semerak conditions. Finally, we also give canonical phase-space coordinates parametrizing the spin tensor. We demonstrate the usefulness of the canonical coordinates for symplectic integration by constructing Poincare surfaces of section for spinning bodies moving in the equatorial plane in Schwarzschild space-time. We observe the motion to be essentially regular for EMRI-ranges of the spin, but for larger values the Poincare surfaces of section exhibit the typical structure of a weakly chaotic system. A possible future application of the numerical integration method is the inclusion of spin effects in EMRIs at the precision requirements of LISA.

  • Název v anglickém jazyce

    Hamiltonians and canonical coordinates for spinning particles in curved space-time

  • Popis výsledku anglicky

    The spin-curvature coupling as captured by the so-called Mathisson–Papapetrou–Dixon (MPD) equations is the leading order effect of the finite size of a rapidly rotating compact astrophysical object moving in a curved background. It is also a next-to-leading order effect in the phase of gravitational waves emitted by extreme-mass-ratio inspirals (EMRIs), which are expected to become observable by the LISA space mission. Additionally, exploring the Hamiltonian formalism for spinning bodies is important for the construction of the so-called effective-one-body waveform models that should eventually cover all mass ratios.nThe MPD equations require supplementary conditions determining the frame in which the moments of the body are computed. We review various choices of these supplementary spin conditions and their properties. Then, we give Hamiltonians either in proper-time or coordinate-time parametrization for the Tulczyjew-Dixon, Mathisson-Pirani, and Kyrian-Semerak conditions. Finally, we also give canonical phase-space coordinates parametrizing the spin tensor. We demonstrate the usefulness of the canonical coordinates for symplectic integration by constructing Poincare surfaces of section for spinning bodies moving in the equatorial plane in Schwarzschild space-time. We observe the motion to be essentially regular for EMRI-ranges of the spin, but for larger values the Poincare surfaces of section exhibit the typical structure of a weakly chaotic system. A possible future application of the numerical integration method is the inclusion of spin effects in EMRIs at the precision requirements of LISA.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ17-06962Y" target="_blank" >GJ17-06962Y: Nelineární jevy ve vícekanálové astronomii černých děr</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Classical and Quantum Gravity

  • ISSN

    0264-9381

  • e-ISSN

    1361-6382

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    31

  • Strana od-do

    075003

  • Kód UT WoS článku

    000460058600003

  • EID výsledku v databázi Scopus

    2-s2.0-85064067618