Hamiltonians and canonical coordinates for spinning particles in curved space-time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F19%3A00519763" target="_blank" >RIV/67985815:_____/19:00519763 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1361-6382/ab002f" target="_blank" >https://doi.org/10.1088/1361-6382/ab002f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6382/ab002f" target="_blank" >10.1088/1361-6382/ab002f</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hamiltonians and canonical coordinates for spinning particles in curved space-time
Popis výsledku v původním jazyce
The spin-curvature coupling as captured by the so-called Mathisson–Papapetrou–Dixon (MPD) equations is the leading order effect of the finite size of a rapidly rotating compact astrophysical object moving in a curved background. It is also a next-to-leading order effect in the phase of gravitational waves emitted by extreme-mass-ratio inspirals (EMRIs), which are expected to become observable by the LISA space mission. Additionally, exploring the Hamiltonian formalism for spinning bodies is important for the construction of the so-called effective-one-body waveform models that should eventually cover all mass ratios.nThe MPD equations require supplementary conditions determining the frame in which the moments of the body are computed. We review various choices of these supplementary spin conditions and their properties. Then, we give Hamiltonians either in proper-time or coordinate-time parametrization for the Tulczyjew-Dixon, Mathisson-Pirani, and Kyrian-Semerak conditions. Finally, we also give canonical phase-space coordinates parametrizing the spin tensor. We demonstrate the usefulness of the canonical coordinates for symplectic integration by constructing Poincare surfaces of section for spinning bodies moving in the equatorial plane in Schwarzschild space-time. We observe the motion to be essentially regular for EMRI-ranges of the spin, but for larger values the Poincare surfaces of section exhibit the typical structure of a weakly chaotic system. A possible future application of the numerical integration method is the inclusion of spin effects in EMRIs at the precision requirements of LISA.
Název v anglickém jazyce
Hamiltonians and canonical coordinates for spinning particles in curved space-time
Popis výsledku anglicky
The spin-curvature coupling as captured by the so-called Mathisson–Papapetrou–Dixon (MPD) equations is the leading order effect of the finite size of a rapidly rotating compact astrophysical object moving in a curved background. It is also a next-to-leading order effect in the phase of gravitational waves emitted by extreme-mass-ratio inspirals (EMRIs), which are expected to become observable by the LISA space mission. Additionally, exploring the Hamiltonian formalism for spinning bodies is important for the construction of the so-called effective-one-body waveform models that should eventually cover all mass ratios.nThe MPD equations require supplementary conditions determining the frame in which the moments of the body are computed. We review various choices of these supplementary spin conditions and their properties. Then, we give Hamiltonians either in proper-time or coordinate-time parametrization for the Tulczyjew-Dixon, Mathisson-Pirani, and Kyrian-Semerak conditions. Finally, we also give canonical phase-space coordinates parametrizing the spin tensor. We demonstrate the usefulness of the canonical coordinates for symplectic integration by constructing Poincare surfaces of section for spinning bodies moving in the equatorial plane in Schwarzschild space-time. We observe the motion to be essentially regular for EMRI-ranges of the spin, but for larger values the Poincare surfaces of section exhibit the typical structure of a weakly chaotic system. A possible future application of the numerical integration method is the inclusion of spin effects in EMRIs at the precision requirements of LISA.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-06962Y" target="_blank" >GJ17-06962Y: Nelineární jevy ve vícekanálové astronomii černých děr</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
1361-6382
Svazek periodika
36
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
31
Strana od-do
075003
Kód UT WoS článku
000460058600003
EID výsledku v databázi Scopus
2-s2.0-85064067618