Second-order gravitational self-force in a highly regular gauge: Covariant and coordinate punctures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00586911" target="_blank" >RIV/67985815:_____/24:00586911 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0354281" target="_blank" >https://hdl.handle.net/11104/0354281</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.109.044021" target="_blank" >10.1103/PhysRevD.109.044021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Second-order gravitational self-force in a highly regular gauge: Covariant and coordinate punctures
Popis výsledku v původním jazyce
Gravitational self-force theory is the primary way of modeling extreme-mass-ratio inspirals (EMRIs). One difficulty that appears in second-order self-force calculations is the strong divergence at the worldline of the small object, which causes both numerical and analytical issues. Previous work [Phys. Rev. D 95, 104056 (2017), 10.1103/PhysRevD.95.104056, Phys. Rev. D 103, 124016 (2021), 10.1103/PhysRevD.103.124016] demonstrated that this could be alleviated within a class of highly regular gauges and presented the metric perturbations in these gauges in a local coordinate form. We build on this previous work by deriving expressions for the highly regular gauge metric perturbations in both fully covariant form and as a generic coordinate expansion. With the metric perturbations in covariant or generic coordinate form, they can easily be expressed in any convenient coordinate system. These results can then be used as input into a puncture scheme in order to solve the field equations describing an EMRI.
Název v anglickém jazyce
Second-order gravitational self-force in a highly regular gauge: Covariant and coordinate punctures
Popis výsledku anglicky
Gravitational self-force theory is the primary way of modeling extreme-mass-ratio inspirals (EMRIs). One difficulty that appears in second-order self-force calculations is the strong divergence at the worldline of the small object, which causes both numerical and analytical issues. Previous work [Phys. Rev. D 95, 104056 (2017), 10.1103/PhysRevD.95.104056, Phys. Rev. D 103, 124016 (2021), 10.1103/PhysRevD.103.124016] demonstrated that this could be alleviated within a class of highly regular gauges and presented the metric perturbations in these gauges in a local coordinate form. We build on this previous work by deriving expressions for the highly regular gauge metric perturbations in both fully covariant form and as a generic coordinate expansion. With the metric perturbations in covariant or generic coordinate form, they can easily be expressed in any convenient coordinate system. These results can then be used as input into a puncture scheme in order to solve the field equations describing an EMRI.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
109
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
044021
Kód UT WoS článku
001175021900010
EID výsledku v databázi Scopus
2-s2.0-85184895628