Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F18%3A00493119" target="_blank" >RIV/67985823:_____/18:00493119 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1089/ars.2017.7225" target="_blank" >http://dx.doi.org/10.1089/ars.2017.7225</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1089/ars.2017.7225" target="_blank" >10.1089/ars.2017.7225</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling
Popis výsledku v původním jazyce
Significance: Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Delta p or its potential component, Delta Psi , which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Delta p dissipation decreases superoxide formation dependent on Delta p. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. Critical Issues: A wide range of UCP antioxidant effects and participations in redox signaling have been reported, however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. Future Directions: Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated.
Název v anglickém jazyce
Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling
Popis výsledku anglicky
Significance: Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Delta p or its potential component, Delta Psi , which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Delta p dissipation decreases superoxide formation dependent on Delta p. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. Critical Issues: A wide range of UCP antioxidant effects and participations in redox signaling have been reported, however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. Future Directions: Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30105 - Physiology (including cytology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Antioxidants & Redox Signaling
ISSN
1523-0864
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
48
Strana od-do
667-714
Kód UT WoS článku
000439467100004
EID výsledku v databázi Scopus
2-s2.0-85044749273