Type analysis of laboratory seismic events by convolutional neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F21%3A00542182" target="_blank" >RIV/67985831:_____/21:00542182 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985530:_____/21:00542182
Výsledek na webu
<a href="https://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=398" target="_blank" >https://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=398</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13168/AGG.2021.0019" target="_blank" >10.13168/AGG.2021.0019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Type analysis of laboratory seismic events by convolutional neural networks
Popis výsledku v původním jazyce
In this work, we successfully identified seismic events (observations of earthquakes) in seismograms using a Convolutional Neural Network (CNN). In accordance with past (analogue) seismogram interpretations, we did not treat digital seismograms as a time series, as per the general method, but, rather, converted them into time snaps of continuous data flow. Multichannel seismograms were represented with a time-frequency domain in the form of multilayer images, with each signal channel forming one image layer. Images were then exposed to CNN (composed of three convolutional blocks whose architecture design was justified using Bayesian optimization). To improve reliability, we evaluated the posterior type function (PTP) as a combination of the probabilities of all of the considered classes of signal types (five in our case) which increased robustness of the identification. For data, we used records of acoustic emission (AE) events. The events were generated during laboratory loading experiments originally performed to study material/rock properties. As known, AE events may be studied in the same manner as natural earthquakes and treated in other ways as laboratory earthquake models. AE events are less complex compared to natural earthquakes where many of the physical parameters are known or may be controlled. Based on our results, we concluded that the successful identification of AE events is a necessary step prior to applying the proposed methodology for identifying natural earthquakes in seismograms.
Název v anglickém jazyce
Type analysis of laboratory seismic events by convolutional neural networks
Popis výsledku anglicky
In this work, we successfully identified seismic events (observations of earthquakes) in seismograms using a Convolutional Neural Network (CNN). In accordance with past (analogue) seismogram interpretations, we did not treat digital seismograms as a time series, as per the general method, but, rather, converted them into time snaps of continuous data flow. Multichannel seismograms were represented with a time-frequency domain in the form of multilayer images, with each signal channel forming one image layer. Images were then exposed to CNN (composed of three convolutional blocks whose architecture design was justified using Bayesian optimization). To improve reliability, we evaluated the posterior type function (PTP) as a combination of the probabilities of all of the considered classes of signal types (five in our case) which increased robustness of the identification. For data, we used records of acoustic emission (AE) events. The events were generated during laboratory loading experiments originally performed to study material/rock properties. As known, AE events may be studied in the same manner as natural earthquakes and treated in other ways as laboratory earthquake models. AE events are less complex compared to natural earthquakes where many of the physical parameters are known or may be controlled. Based on our results, we concluded that the successful identification of AE events is a necessary step prior to applying the proposed methodology for identifying natural earthquakes in seismograms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10507 - Volcanology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-26542S" target="_blank" >GA21-26542S: Vliv postgenetických přeměn žul na jejich odolnost vůči zvětrávacím procesům v historických stavbách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta geodynamica et geomaterialia
ISSN
1214-9705
e-ISSN
2336-4351
Svazek periodika
18
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
267-277
Kód UT WoS článku
000661266800011
EID výsledku v databázi Scopus
2-s2.0-85109105310