Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Type analysis of laboratory seismic events by convolutional neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F21%3A00542182" target="_blank" >RIV/67985831:_____/21:00542182 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985530:_____/21:00542182

  • Výsledek na webu

    <a href="https://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=398" target="_blank" >https://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=398</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13168/AGG.2021.0019" target="_blank" >10.13168/AGG.2021.0019</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Type analysis of laboratory seismic events by convolutional neural networks

  • Popis výsledku v původním jazyce

    In this work, we successfully identified seismic events (observations of earthquakes) in seismograms using a Convolutional Neural Network (CNN). In accordance with past (analogue) seismogram interpretations, we did not treat digital seismograms as a time series, as per the general method, but, rather, converted them into time snaps of continuous data flow. Multichannel seismograms were represented with a time-frequency domain in the form of multilayer images, with each signal channel forming one image layer. Images were then exposed to CNN (composed of three convolutional blocks whose architecture design was justified using Bayesian optimization). To improve reliability, we evaluated the posterior type function (PTP) as a combination of the probabilities of all of the considered classes of signal types (five in our case) which increased robustness of the identification. For data, we used records of acoustic emission (AE) events. The events were generated during laboratory loading experiments originally performed to study material/rock properties. As known, AE events may be studied in the same manner as natural earthquakes and treated in other ways as laboratory earthquake models. AE events are less complex compared to natural earthquakes where many of the physical parameters are known or may be controlled. Based on our results, we concluded that the successful identification of AE events is a necessary step prior to applying the proposed methodology for identifying natural earthquakes in seismograms.

  • Název v anglickém jazyce

    Type analysis of laboratory seismic events by convolutional neural networks

  • Popis výsledku anglicky

    In this work, we successfully identified seismic events (observations of earthquakes) in seismograms using a Convolutional Neural Network (CNN). In accordance with past (analogue) seismogram interpretations, we did not treat digital seismograms as a time series, as per the general method, but, rather, converted them into time snaps of continuous data flow. Multichannel seismograms were represented with a time-frequency domain in the form of multilayer images, with each signal channel forming one image layer. Images were then exposed to CNN (composed of three convolutional blocks whose architecture design was justified using Bayesian optimization). To improve reliability, we evaluated the posterior type function (PTP) as a combination of the probabilities of all of the considered classes of signal types (five in our case) which increased robustness of the identification. For data, we used records of acoustic emission (AE) events. The events were generated during laboratory loading experiments originally performed to study material/rock properties. As known, AE events may be studied in the same manner as natural earthquakes and treated in other ways as laboratory earthquake models. AE events are less complex compared to natural earthquakes where many of the physical parameters are known or may be controlled. Based on our results, we concluded that the successful identification of AE events is a necessary step prior to applying the proposed methodology for identifying natural earthquakes in seismograms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10507 - Volcanology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-26542S" target="_blank" >GA21-26542S: Vliv postgenetických přeměn žul na jejich odolnost vůči zvětrávacím procesům v historických stavbách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta geodynamica et geomaterialia

  • ISSN

    1214-9705

  • e-ISSN

    2336-4351

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    11

  • Strana od-do

    267-277

  • Kód UT WoS článku

    000661266800011

  • EID výsledku v databázi Scopus

    2-s2.0-85109105310