A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00557153" target="_blank" >RIV/67985530:_____/22:00557153 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985831:_____/22:00557153
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0098300422000772" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0098300422000772</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cageo.2022.105119" target="_blank" >10.1016/j.cageo.2022.105119</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks
Popis výsledku v původním jazyce
We present an algorithm for seismic event discrimination and event approximate location based on multi-station seismograms. A deep learning approach was applied using a two-step algorithm: (i) signal onsets were identified in individual tracks based on the use of long-short-term memory neural network layers, (ii) if a sufficient number of onsets were reliably identified, a preliminary location was determined. We adopted a “reverse location approach” where the time sense of a seismogram is reverted and the origin time is predicted using a neural network approach based on previously determined onsets. Successful location or origin time prediction also served as a feedback for confirming previous onset identification. The method was tested using a data set of Acoustic Emission generated from the uniaxial loading of a Westerly Granite specimen. Accuracy of the method was better than 97%. Discriminated events were automatically located and their seismic moment tensor was determined. Both types of results were in good agreement with the baseline data set. With respect to the particular nature of processed data, we provide a demo code which shows examples presented in the article. In addition, a detailed description of the algorithm, including the control parameter values, is provided in the text. Based on this information the method can be applied on any data.
Název v anglickém jazyce
A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks
Popis výsledku anglicky
We present an algorithm for seismic event discrimination and event approximate location based on multi-station seismograms. A deep learning approach was applied using a two-step algorithm: (i) signal onsets were identified in individual tracks based on the use of long-short-term memory neural network layers, (ii) if a sufficient number of onsets were reliably identified, a preliminary location was determined. We adopted a “reverse location approach” where the time sense of a seismogram is reverted and the origin time is predicted using a neural network approach based on previously determined onsets. Successful location or origin time prediction also served as a feedback for confirming previous onset identification. The method was tested using a data set of Acoustic Emission generated from the uniaxial loading of a Westerly Granite specimen. Accuracy of the method was better than 97%. Discriminated events were automatically located and their seismic moment tensor was determined. Both types of results were in good agreement with the baseline data set. With respect to the particular nature of processed data, we provide a demo code which shows examples presented in the article. In addition, a detailed description of the algorithm, including the control parameter values, is provided in the text. Based on this information the method can be applied on any data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10507 - Volcanology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-26542S" target="_blank" >GA21-26542S: Vliv postgenetických přeměn žul na jejich odolnost vůči zvětrávacím procesům v historických stavbách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Geosciences
ISSN
0098-3004
e-ISSN
1873-7803
Svazek periodika
163
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
105119
Kód UT WoS článku
000798193200005
EID výsledku v databázi Scopus
2-s2.0-85129059539