Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00557153" target="_blank" >RIV/67985530:_____/22:00557153 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985831:_____/22:00557153

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0098300422000772" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0098300422000772</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cageo.2022.105119" target="_blank" >10.1016/j.cageo.2022.105119</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks

  • Popis výsledku v původním jazyce

    We present an algorithm for seismic event discrimination and event approximate location based on multi-station seismograms. A deep learning approach was applied using a two-step algorithm: (i) signal onsets were identified in individual tracks based on the use of long-short-term memory neural network layers, (ii) if a sufficient number of onsets were reliably identified, a preliminary location was determined. We adopted a “reverse location approach” where the time sense of a seismogram is reverted and the origin time is predicted using a neural network approach based on previously determined onsets. Successful location or origin time prediction also served as a feedback for confirming previous onset identification. The method was tested using a data set of Acoustic Emission generated from the uniaxial loading of a Westerly Granite specimen. Accuracy of the method was better than 97%. Discriminated events were automatically located and their seismic moment tensor was determined. Both types of results were in good agreement with the baseline data set. With respect to the particular nature of processed data, we provide a demo code which shows examples presented in the article. In addition, a detailed description of the algorithm, including the control parameter values, is provided in the text. Based on this information the method can be applied on any data.

  • Název v anglickém jazyce

    A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks

  • Popis výsledku anglicky

    We present an algorithm for seismic event discrimination and event approximate location based on multi-station seismograms. A deep learning approach was applied using a two-step algorithm: (i) signal onsets were identified in individual tracks based on the use of long-short-term memory neural network layers, (ii) if a sufficient number of onsets were reliably identified, a preliminary location was determined. We adopted a “reverse location approach” where the time sense of a seismogram is reverted and the origin time is predicted using a neural network approach based on previously determined onsets. Successful location or origin time prediction also served as a feedback for confirming previous onset identification. The method was tested using a data set of Acoustic Emission generated from the uniaxial loading of a Westerly Granite specimen. Accuracy of the method was better than 97%. Discriminated events were automatically located and their seismic moment tensor was determined. Both types of results were in good agreement with the baseline data set. With respect to the particular nature of processed data, we provide a demo code which shows examples presented in the article. In addition, a detailed description of the algorithm, including the control parameter values, is provided in the text. Based on this information the method can be applied on any data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10507 - Volcanology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-26542S" target="_blank" >GA21-26542S: Vliv postgenetických přeměn žul na jejich odolnost vůči zvětrávacím procesům v historických stavbách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Geosciences

  • ISSN

    0098-3004

  • e-ISSN

    1873-7803

  • Svazek periodika

    163

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    105119

  • Kód UT WoS článku

    000798193200005

  • EID výsledku v databázi Scopus

    2-s2.0-85129059539