Discrimination of doubled acoustic emission events using neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F24%3A00597655" target="_blank" >RIV/67985530:_____/24:00597655 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985831:_____/24:00598246 RIV/67985891:_____/24:00597655
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0041624X24002026?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0041624X24002026?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ultras.2024.107439" target="_blank" >10.1016/j.ultras.2024.107439</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrimination of doubled acoustic emission events using neural networks
Popis výsledku v původním jazyce
In observatory seismology, the effective automatic processing of seismograms is a time-consuming task. A contemporary approach for seismogram processing is based on the Deep Neural Network formalism, which has been successfully applied in many fields. Here, we present a 4D network, based on U-net architecture, that simultaneously processes seismograms from an entire network. We also interpret Acoustic Emission data based on a laboratory loading experiment. The obtained data was a very good testing set, similar to real seismograms. Our Neural network is designed to detect multiple events. Input data are created by augmentation from previously interpreted single events. The advantage of the approach is that the positions of (multiple) events are exactly known, thus, the efficiency of detection can be evaluated. Even if the method reaches an average efficiency of only around 30% for the onset of individual tracks, average efficiency for the detection of double events was approximately 97% for a maximum target, with a prediction difference of 20 samples. Such is the main benefit of simultaneous network signal processing.
Název v anglickém jazyce
Discrimination of doubled acoustic emission events using neural networks
Popis výsledku anglicky
In observatory seismology, the effective automatic processing of seismograms is a time-consuming task. A contemporary approach for seismogram processing is based on the Deep Neural Network formalism, which has been successfully applied in many fields. Here, we present a 4D network, based on U-net architecture, that simultaneously processes seismograms from an entire network. We also interpret Acoustic Emission data based on a laboratory loading experiment. The obtained data was a very good testing set, similar to real seismograms. Our Neural network is designed to detect multiple events. Input data are created by augmentation from previously interpreted single events. The advantage of the approach is that the positions of (multiple) events are exactly known, thus, the efficiency of detection can be evaluated. Even if the method reaches an average efficiency of only around 30% for the onset of individual tracks, average efficiency for the detection of double events was approximately 97% for a maximum target, with a prediction difference of 20 samples. Such is the main benefit of simultaneous network signal processing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-00580S" target="_blank" >GA22-00580S: Vliv anizotropie hornin při hydraulickém štěpení zkoumaný akustickou emisí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ultrasonics
ISSN
0041-624X
e-ISSN
1874-9968
Svazek periodika
144
Číslo periodika v rámci svazku
Dec.
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
107439
Kód UT WoS článku
001301301800001
EID výsledku v databázi Scopus
2-s2.0-85201752816