Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Assessment of structural, magnetic, and P-wave velocity anisotropy of two biotite gneisses from X-ray and neutron tomography

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F21%3A00549647" target="_blank" >RIV/67985831:_____/21:00549647 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0040195121002079?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040195121002079?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tecto.2021.228925" target="_blank" >10.1016/j.tecto.2021.228925</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Assessment of structural, magnetic, and P-wave velocity anisotropy of two biotite gneisses from X-ray and neutron tomography

  • Popis výsledku v původním jazyce

    Anisotropy of the physical properties of rocks is directly related to their internal structure, which is often exhibited by lineation and foliation fabrics as anisotropy markers. Conventional methods of diffraction measurements only provide a part of the structural information that is related to the crystallographic preferred orientation of minerals. In this work, we show the contribution of imaging methods such as X-ray and neutron tomography in studying rock structure that exhibits anisotropic character through lineation and foliation fabrics. In our tomography studies, spherical samples of two different biotite gneisses were tested. Virtual 3D structure models of samples were obtained by both neutron and X-ray tomography, which depict the spatial distribution of mica minerals (biotite and muscovite) - the major carriers of rock anisotropy in the studied samples. An application of scanning method to the 3D data of mica's spatial distribution allowed us to reveal the presence, orientation and strength of foliation and lineation fabrics. We have also performed grain shape analysis using the approximation of the individual elements of segmented mica phase by the equivalent (Legendre's) ellipsoids. As a result, we determined the shape preferred orientations of mica grains and calculated corresponding shape orientation distribution functions. The comparison of structural properties obtained from tomography studies with experimentally determined P-wave, and magnetic anisotropy demonstrated their mutual correlation, providing a basis for the quantitative interpretation of anisotropic rock fabric in relation to the physical properties of rock. The effective elastic and magnetic properties were calculated based on the shape orientation distribution functions determined from tomography data. The good agreement between calculated and measured effective properties have shown the potential of X-ray and neutron tomography for the prediction of magnetic and seismic anisotropy using a 3D model of a rock sample.

  • Název v anglickém jazyce

    Assessment of structural, magnetic, and P-wave velocity anisotropy of two biotite gneisses from X-ray and neutron tomography

  • Popis výsledku anglicky

    Anisotropy of the physical properties of rocks is directly related to their internal structure, which is often exhibited by lineation and foliation fabrics as anisotropy markers. Conventional methods of diffraction measurements only provide a part of the structural information that is related to the crystallographic preferred orientation of minerals. In this work, we show the contribution of imaging methods such as X-ray and neutron tomography in studying rock structure that exhibits anisotropic character through lineation and foliation fabrics. In our tomography studies, spherical samples of two different biotite gneisses were tested. Virtual 3D structure models of samples were obtained by both neutron and X-ray tomography, which depict the spatial distribution of mica minerals (biotite and muscovite) - the major carriers of rock anisotropy in the studied samples. An application of scanning method to the 3D data of mica's spatial distribution allowed us to reveal the presence, orientation and strength of foliation and lineation fabrics. We have also performed grain shape analysis using the approximation of the individual elements of segmented mica phase by the equivalent (Legendre's) ellipsoids. As a result, we determined the shape preferred orientations of mica grains and calculated corresponding shape orientation distribution functions. The comparison of structural properties obtained from tomography studies with experimentally determined P-wave, and magnetic anisotropy demonstrated their mutual correlation, providing a basis for the quantitative interpretation of anisotropic rock fabric in relation to the physical properties of rock. The effective elastic and magnetic properties were calculated based on the shape orientation distribution functions determined from tomography data. The good agreement between calculated and measured effective properties have shown the potential of X-ray and neutron tomography for the prediction of magnetic and seismic anisotropy using a 3D model of a rock sample.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-08826S" target="_blank" >GA18-08826S: Odolnost vůči křehkému porušení: význam petrografických / mechanických dat pro technologicko-mechanické vlastnosti a životnost drceného kamene</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Tectonophysics

  • ISSN

    0040-1951

  • e-ISSN

    1879-3266

  • Svazek periodika

    812

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    228925

  • Kód UT WoS článku

    000674655100010

  • EID výsledku v databázi Scopus

    2-s2.0-85106303902