O netupoúhlých simpliciálních triangulacích
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00324117" target="_blank" >RIV/67985840:_____/09:00324117 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Nonobtuse Simplicial Partitions
Popis výsledku v původním jazyce
This paper surveys some results on acute and nonobtuse simplices and associated spatial partitions. These partitions are relevant in numerical mathematics, including piecewise polynomial approximation theory and the finite element method. Special attention is paid to a basic type of nonobtuse simplices called path-simplices, the generalization of right triangles to higher dimensions. In addition to applications in numerical mathematics, we give examples of the appearance of acute and nonobtuse simplicesin other areas of mathematics.
Název v anglickém jazyce
On Nonobtuse Simplicial Partitions
Popis výsledku anglicky
This paper surveys some results on acute and nonobtuse simplices and associated spatial partitions. These partitions are relevant in numerical mathematics, including piecewise polynomial approximation theory and the finite element method. Special attention is paid to a basic type of nonobtuse simplices called path-simplices, the generalization of right triangles to higher dimensions. In addition to applications in numerical mathematics, we give examples of the appearance of acute and nonobtuse simplicesin other areas of mathematics.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F04%2F1503" target="_blank" >GA201/04/1503: Matematická a numerická analýza nelineárních okrajových úloh</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Review
ISSN
0036-1445
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000266289500002
EID výsledku v databázi Scopus
—