Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Algebraic proofs over noncommutative formulas

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00374767" target="_blank" >RIV/67985840:_____/10:00374767 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Algebraic proofs over noncommutative formulas

  • Popis výsledku v původním jazyce

    We study possible formulations of algebraic propositional proofs operating with noncommutative polynomials written as algebraic noncommutative formulas. First, we observe that a simple formulation of such proof systems gives rise to systems at least as strong as Frege-yielding also a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic variant of Frege proofs, different from that given before in [8,11]. We then turn to an apparently weaker system, namely, Polynomial Calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear ordering on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and

  • Název v anglickém jazyce

    Algebraic proofs over noncommutative formulas

  • Popis výsledku anglicky

    We study possible formulations of algebraic propositional proofs operating with noncommutative polynomials written as algebraic noncommutative formulas. First, we observe that a simple formulation of such proof systems gives rise to systems at least as strong as Frege-yielding also a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic variant of Frege proofs, different from that given before in [8,11]. We then turn to an apparently weaker system, namely, Polynomial Calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear ordering on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Theory and Applications of Models of Computation

  • ISBN

    978-3-642-13561-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    60-71

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Prague,

  • Datum konání akce

    7. 6. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000279560400006