Algebraic proofs over noncommutative formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00374767" target="_blank" >RIV/67985840:_____/10:00374767 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic proofs over noncommutative formulas
Popis výsledku v původním jazyce
We study possible formulations of algebraic propositional proofs operating with noncommutative polynomials written as algebraic noncommutative formulas. First, we observe that a simple formulation of such proof systems gives rise to systems at least as strong as Frege-yielding also a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic variant of Frege proofs, different from that given before in [8,11]. We then turn to an apparently weaker system, namely, Polynomial Calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear ordering on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and
Název v anglickém jazyce
Algebraic proofs over noncommutative formulas
Popis výsledku anglicky
We study possible formulations of algebraic propositional proofs operating with noncommutative polynomials written as algebraic noncommutative formulas. First, we observe that a simple formulation of such proof systems gives rise to systems at least as strong as Frege-yielding also a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic variant of Frege proofs, different from that given before in [8,11]. We then turn to an apparently weaker system, namely, Polynomial Calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear ordering on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory and Applications of Models of Computation
ISBN
978-3-642-13561-3
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
60-71
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Prague,
Datum konání akce
7. 6. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000279560400006