Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parity games and propositional proofs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00430389" target="_blank" >RIV/67985840:_____/14:00430389 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1145/2579822" target="_blank" >http://dx.doi.org/10.1145/2579822</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2579822" target="_blank" >10.1145/2579822</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parity games and propositional proofs

  • Popis výsledku v původním jazyce

    A propositional proof system is weakly automatizable if there is a polynomial time algorithm that separates satisfiable formulas from formulas that have a short refutation in the system, with respect to a given length bound. We show that if the resolution proof system is weakly automatizable, then parity games can be decided in polynomial time. We give simple proofs that the same holds for depth-1 propositional calculus (where resolution has depth 0) with respect to mean payoff and simple stochastic games. We define a new type of combinatorial game and prove that resolution is weakly automatizable if and only if one can separate, by a set decidable in polynomial time, the games in which the first player has a positional winning strategy from the gamesin which the second player has a positional winning strategy.

  • Název v anglickém jazyce

    Parity games and propositional proofs

  • Popis výsledku anglicky

    A propositional proof system is weakly automatizable if there is a polynomial time algorithm that separates satisfiable formulas from formulas that have a short refutation in the system, with respect to a given length bound. We show that if the resolution proof system is weakly automatizable, then parity games can be decided in polynomial time. We give simple proofs that the same holds for depth-1 propositional calculus (where resolution has depth 0) with respect to mean payoff and simple stochastic games. We define a new type of combinatorial game and prove that resolution is weakly automatizable if and only if one can separate, by a set decidable in polynomial time, the games in which the first player has a positional winning strategy from the gamesin which the second player has a positional winning strategy.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA100190902" target="_blank" >IAA100190902: Matematická logika, složitost a algoritmy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Computational Logic

  • ISSN

    1529-3785

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

  • Kód UT WoS článku

    000336005000007

  • EID výsledku v databázi Scopus