Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Smooth bifurcation branches of solutions for a Signorini problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00354842" target="_blank" >RIV/67985840:_____/11:00354842 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/11:43881736

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Smooth bifurcation branches of solutions for a Signorini problem

  • Popis výsledku v původním jazyce

    We study a bifurcation problem for the equation ?u+?u+g(?,u)u=0 on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. Here is the bifurcation parameter, and g is a small perturbation. We prove, under certain assumptions concerning an eigenfunction u0 corresponding to an eigenvalue ?0 of the linearized equation with the same nonlinear boundary conditions, the existence of a local smooth branch of nontrivial solutions bifurcating from the trivial solutions at ?0 in the direction of u0. The contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tool of the proof is a local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations. To this system classical Crandall?Rabinowitz type local bifurcation techniques (scaling and Implicit Function Theorem) are applied.

  • Název v anglickém jazyce

    Smooth bifurcation branches of solutions for a Signorini problem

  • Popis výsledku anglicky

    We study a bifurcation problem for the equation ?u+?u+g(?,u)u=0 on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. Here is the bifurcation parameter, and g is a small perturbation. We prove, under certain assumptions concerning an eigenfunction u0 corresponding to an eigenvalue ?0 of the linearized equation with the same nonlinear boundary conditions, the existence of a local smooth branch of nontrivial solutions bifurcating from the trivial solutions at ?0 in the direction of u0. The contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tool of the proof is a local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations. To this system classical Crandall?Rabinowitz type local bifurcation techniques (scaling and Implicit Function Theorem) are applied.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA100190805" target="_blank" >IAA100190805: Bifurkace a závislost na parametrech pro jednostranné okrajové úlohy a interpretace v přírodních vědách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Analysis: Theory, Methods & Applications

  • ISSN

    0362-546X

  • e-ISSN

  • Svazek periodika

    74

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    25

  • Strana od-do

  • Kód UT WoS článku

    000286178200031

  • EID výsledku v databázi Scopus