Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A note on propositional proof complexity of some Ramsey-type statements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00369652" target="_blank" >RIV/67985840:_____/11:00369652 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00153-010-0212-9" target="_blank" >http://dx.doi.org/10.1007/s00153-010-0212-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00153-010-0212-9" target="_blank" >10.1007/s00153-010-0212-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A note on propositional proof complexity of some Ramsey-type statements

  • Popis výsledku v původním jazyce

    A Ramsey statement denoted n -> (k)(2)(2) says that every undirected graph on n vertices contains either a clique or an independent set of size k. Any such valid statement can be encoded into a valid DNF formulaRAM(n, k) of size O(n(k)) and with terms ofsize ((k)(2)). Let r(k) be the minimal n for which the statement holds. We prove that RAM(r(k), k) requires exponential size constant depth Frege systems, answering a problem of Krishnamurthy and Moll [15]. As a consequence of Pudlak's work in bounded arithmetic [19] it is known that there are quasi-polynomial size constant depth Frege proofs of RAM(4(k), k), but the proof complexity of these formulas in resolution R or in its extension R(log) is unknown. We define two relativizations of the Ramsey statement that still have quasi-polynomial size constant depth Frege proofs but for which we establish exponential lower bound for R.

  • Název v anglickém jazyce

    A note on propositional proof complexity of some Ramsey-type statements

  • Popis výsledku anglicky

    A Ramsey statement denoted n -> (k)(2)(2) says that every undirected graph on n vertices contains either a clique or an independent set of size k. Any such valid statement can be encoded into a valid DNF formulaRAM(n, k) of size O(n(k)) and with terms ofsize ((k)(2)). Let r(k) be the minimal n for which the statement holds. We prove that RAM(r(k), k) requires exponential size constant depth Frege systems, answering a problem of Krishnamurthy and Moll [15]. As a consequence of Pudlak's work in bounded arithmetic [19] it is known that there are quasi-polynomial size constant depth Frege proofs of RAM(4(k), k), but the proof complexity of these formulas in resolution R or in its extension R(log) is unknown. We define two relativizations of the Ramsey statement that still have quasi-polynomial size constant depth Frege proofs but for which we establish exponential lower bound for R.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archive for Mathematical Logic

  • ISSN

    1432-0665

  • e-ISSN

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    11

  • Strana od-do

    245-255

  • Kód UT WoS článku

    000286668400014

  • EID výsledku v databázi Scopus