Periodic solutions to singular second order differential equations: the repulsive case
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00380708" target="_blank" >RIV/67985840:_____/12:00380708 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Periodic solutions to singular second order differential equations: the repulsive case
Popis výsledku v původním jazyce
This paper is devoted to study the existence of periodic solutions to the second-order differential equation u '' + f(u)u' + g(u) = h(t, u), where h is a Caratheodory function and f, g are continuous functions on (0, infinity) which may have singularities at zero. The repulsive case is considered. By using Schaefer's fixed point theorem, new conditions for existence of periodic solutions are obtained. Such conditions are compared with those existent in the related literature and applied to the Rayleigh-Plesset equation, a physical model for the oscillations of a spherical bubble in a liquid under the influence of a periodic acoustic field. Such a model has been the main motivation of this work.
Název v anglickém jazyce
Periodic solutions to singular second order differential equations: the repulsive case
Popis výsledku anglicky
This paper is devoted to study the existence of periodic solutions to the second-order differential equation u '' + f(u)u' + g(u) = h(t, u), where h is a Caratheodory function and f, g are continuous functions on (0, infinity) which may have singularities at zero. The repulsive case is considered. By using Schaefer's fixed point theorem, new conditions for existence of periodic solutions are obtained. Such conditions are compared with those existent in the related literature and applied to the Rayleigh-Plesset equation, a physical model for the oscillations of a spherical bubble in a liquid under the influence of a periodic acoustic field. Such a model has been the main motivation of this work.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topological Methods in Nonlinear Analysis
ISSN
1230-3429
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
22
Strana od-do
199-220
Kód UT WoS článku
000305813200001
EID výsledku v databázi Scopus
—