On the choice of functions spaces in the limit analysis for masonry bodies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00392481" target="_blank" >RIV/67985840:_____/12:00392481 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.2140/jomms.2012.7.795" target="_blank" >http://dx.doi.org/10.2140/jomms.2012.7.795</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/jomms.2012.7.795" target="_blank" >10.2140/jomms.2012.7.795</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the choice of functions spaces in the limit analysis for masonry bodies
Popis výsledku v původním jazyce
The kinematic and static problems of limit analysis of no-tension bodies are formulated. The kinematic problem involves the infimum of kinematically admissible multipliers, and the static problem the supremum of statically admissible multipliers. The central question of the paper is under which conditions these two numbers coincide. This involves choices of function spaces for the competitor displacements and competitor stresses. A whole ordered scale of these spaces is presented. These problems are formulated as convex variational problems considered by Ekeland and Temam. The static problem is unconditionally shown to be the dual problem (in the sense of the mentioned reference) of the kinematic problem. A necessary and sufficient condition, the normality, guarantees that the kinematic and static problems give the same result. The normality is not always satisfied, as examples show (one of which is presented here).
Název v anglickém jazyce
On the choice of functions spaces in the limit analysis for masonry bodies
Popis výsledku anglicky
The kinematic and static problems of limit analysis of no-tension bodies are formulated. The kinematic problem involves the infimum of kinematically admissible multipliers, and the static problem the supremum of statically admissible multipliers. The central question of the paper is under which conditions these two numbers coincide. This involves choices of function spaces for the competitor displacements and competitor stresses. A whole ordered scale of these spaces is presented. These problems are formulated as convex variational problems considered by Ekeland and Temam. The static problem is unconditionally shown to be the dual problem (in the sense of the mentioned reference) of the kinematic problem. A necessary and sufficient condition, the normality, guarantees that the kinematic and static problems give the same result. The normality is not always satisfied, as examples show (one of which is presented here).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mechanics of Materials and Structures
ISSN
1559-3959
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
42
Strana od-do
795-836
Kód UT WoS článku
000314220500005
EID výsledku v databázi Scopus
—