Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Asymptotic behaviour of Maxwell fields in higher dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00437500" target="_blank" >RIV/67985840:_____/14:00437500 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1103/PhysRevD.90.124020" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.90.124020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.90.124020" target="_blank" >10.1103/PhysRevD.90.124020</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Asymptotic behaviour of Maxwell fields in higher dimensions

  • Popis výsledku v původním jazyce

    We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of ''expanding'' null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptotically) flat and (anti-)deSitter spacetimes. Various possible boundary conditions result in different characteristic fall-offs, in which the leading component can be of any algebraic type (N, II or G). In particular, the peeling-off of radiative fields $F=Nr^{1-n/2}+Gr^{-n/2}+ldots$ differs from the standard four-dimensional one (instead it qualitatively resembles the recently determined behaviour of the Weyl tensor in higher dimensions). General $p$-form fields are also briefly discussed. In even $n$ dimensions, the special case $p=n/2$ displays unique properties and peels off in the ''standard way'' as $F=Nr...{1-n/2}+IIr...{-n/2}+ldots$. A few explicit examples are mentioned.

  • Název v anglickém jazyce

    Asymptotic behaviour of Maxwell fields in higher dimensions

  • Popis výsledku anglicky

    We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of ''expanding'' null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptotically) flat and (anti-)deSitter spacetimes. Various possible boundary conditions result in different characteristic fall-offs, in which the leading component can be of any algebraic type (N, II or G). In particular, the peeling-off of radiative fields $F=Nr^{1-n/2}+Gr^{-n/2}+ldots$ differs from the standard four-dimensional one (instead it qualitatively resembles the recently determined behaviour of the Weyl tensor in higher dimensions). General $p$-form fields are also briefly discussed. In even $n$ dimensions, the special case $p=n/2$ displays unique properties and peels off in the ''standard way'' as $F=Nr...{1-n/2}+IIr...{-n/2}+ldots$. A few explicit examples are mentioned.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GB14-37086G" target="_blank" >GB14-37086G: Centrum Alberta Einsteina pro gravitaci a astrofyziku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D: Particles, Fields, Gravitation and Cosmology

  • ISSN

    1550-7998

  • e-ISSN

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    000346830000006

  • EID výsledku v databázi Scopus