Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Circuit lower bounds in bounded arithmetics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00438367" target="_blank" >RIV/67985840:_____/15:00438367 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/15:10317954

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.apal.2014.08.004" target="_blank" >http://dx.doi.org/10.1016/j.apal.2014.08.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apal.2014.08.004" target="_blank" >10.1016/j.apal.2014.08.004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Circuit lower bounds in bounded arithmetics

  • Popis výsledku v původním jazyce

    We prove that T-Nc(1), the true universal first-order theory in the language containing names for all uniform NC1 algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size n(4kc) where k >= 1, c >= 2 unless each function f is an element of SIZE(n(k)) can be approximated by formulas {Fn}(n=1)(infinity) of subexponential size 2(O(n1/c)) with subexponential advantage: P-x is an element of(0,1)(n) (F-n(x) = f(x)) >= 1/2+1/2(O)(n(1/c)). Unconditionally, V cannot provethat for sufficiently large n, SAT does not have circuits of size n(logn). The proof is based on an interpretation of Krajicek's proof (Krajicek, 2011 [15]) that certain NW-generators are hard for T-PV, the true universal theory in the language containing names for all p-time algorithms.

  • Název v anglickém jazyce

    Circuit lower bounds in bounded arithmetics

  • Popis výsledku anglicky

    We prove that T-Nc(1), the true universal first-order theory in the language containing names for all uniform NC1 algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size n(4kc) where k >= 1, c >= 2 unless each function f is an element of SIZE(n(k)) can be approximated by formulas {Fn}(n=1)(infinity) of subexponential size 2(O(n1/c)) with subexponential advantage: P-x is an element of(0,1)(n) (F-n(x) = f(x)) >= 1/2+1/2(O)(n(1/c)). Unconditionally, V cannot provethat for sufficiently large n, SAT does not have circuits of size n(logn). The proof is based on an interpretation of Krajicek's proof (Krajicek, 2011 [15]) that certain NW-generators are hard for T-PV, the true universal theory in the language containing names for all p-time algorithms.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA100190902" target="_blank" >IAA100190902: Matematická logika, složitost a algoritmy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Pure and Applied Logic

  • ISSN

    0168-0072

  • e-ISSN

  • Svazek periodika

    166

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    29-45

  • Kód UT WoS článku

    000345480600002

  • EID výsledku v databázi Scopus