Circuit lower bounds in bounded arithmetics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00438367" target="_blank" >RIV/67985840:_____/15:00438367 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/15:10317954
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.apal.2014.08.004" target="_blank" >http://dx.doi.org/10.1016/j.apal.2014.08.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2014.08.004" target="_blank" >10.1016/j.apal.2014.08.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Circuit lower bounds in bounded arithmetics
Popis výsledku v původním jazyce
We prove that T-Nc(1), the true universal first-order theory in the language containing names for all uniform NC1 algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size n(4kc) where k >= 1, c >= 2 unless each function f is an element of SIZE(n(k)) can be approximated by formulas {Fn}(n=1)(infinity) of subexponential size 2(O(n1/c)) with subexponential advantage: P-x is an element of(0,1)(n) (F-n(x) = f(x)) >= 1/2+1/2(O)(n(1/c)). Unconditionally, V cannot provethat for sufficiently large n, SAT does not have circuits of size n(logn). The proof is based on an interpretation of Krajicek's proof (Krajicek, 2011 [15]) that certain NW-generators are hard for T-PV, the true universal theory in the language containing names for all p-time algorithms.
Název v anglickém jazyce
Circuit lower bounds in bounded arithmetics
Popis výsledku anglicky
We prove that T-Nc(1), the true universal first-order theory in the language containing names for all uniform NC1 algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size n(4kc) where k >= 1, c >= 2 unless each function f is an element of SIZE(n(k)) can be approximated by formulas {Fn}(n=1)(infinity) of subexponential size 2(O(n1/c)) with subexponential advantage: P-x is an element of(0,1)(n) (F-n(x) = f(x)) >= 1/2+1/2(O)(n(1/c)). Unconditionally, V cannot provethat for sufficiently large n, SAT does not have circuits of size n(logn). The proof is based on an interpretation of Krajicek's proof (Krajicek, 2011 [15]) that certain NW-generators are hard for T-PV, the true universal theory in the language containing names for all p-time algorithms.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100190902" target="_blank" >IAA100190902: Matematická logika, složitost a algoritmy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Svazek periodika
166
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
29-45
Kód UT WoS článku
000345480600002
EID výsledku v databázi Scopus
—