Rules with parameters in modal logic I
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00444112" target="_blank" >RIV/67985840:_____/15:00444112 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.apal.2015.04.004" target="_blank" >http://dx.doi.org/10.1016/j.apal.2015.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2015.04.004" target="_blank" >10.1016/j.apal.2015.04.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rules with parameters in modal logic I
Popis výsledku v původním jazyce
We study admissibility of inference rules and unification with parameters in transitive modal logics: we generalize various results on parameter-free admissibility and unification to the setting with parameters. We give a characterization of projective formulas generalizing Ghilardi's characterization in the parameter-free case, leading to new proofs of Rybakov's results that admissibility with parameters is decidable and unification is finitary for logics satisfying suitable frame extension properties(called cluster-extensible logics in this paper). We construct explicit bases of admissible rules with parameters for cluster-extensible logics, and give their semantic description. We show that in the case of finitely many parameters, these logics haveindependent bases of admissible rules, and determine which logics have finite bases. We also show that cluster-extensible logics have nice properties: they are finitely axiomatizable, and have an exponential-size model property. ...
Název v anglickém jazyce
Rules with parameters in modal logic I
Popis výsledku anglicky
We study admissibility of inference rules and unification with parameters in transitive modal logics: we generalize various results on parameter-free admissibility and unification to the setting with parameters. We give a characterization of projective formulas generalizing Ghilardi's characterization in the parameter-free case, leading to new proofs of Rybakov's results that admissibility with parameters is decidable and unification is finitary for logics satisfying suitable frame extension properties(called cluster-extensible logics in this paper). We construct explicit bases of admissible rules with parameters for cluster-extensible logics, and give their semantic description. We show that in the case of finitely many parameters, these logics haveindependent bases of admissible rules, and determine which logics have finite bases. We also show that cluster-extensible logics have nice properties: they are finitely axiomatizable, and have an exponential-size model property. ...
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Svazek periodika
166
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
53
Strana od-do
881-933
Kód UT WoS článku
000356201300002
EID výsledku v databázi Scopus
2-s2.0-84929709558