On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00452994" target="_blank" >RIV/67985840:_____/16:00452994 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3934/dcdss.2016.9.173" target="_blank" >http://dx.doi.org/10.3934/dcdss.2016.9.173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcdss.2016.9.173" target="_blank" >10.3934/dcdss.2016.9.173</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
Popis výsledku v původním jazyce
We consider the Euler-Cahn-Hilliard system proposed by Lowengrub and Truskinovsky describing the motion of a binary mixture of compressible fluids. We show that the associated initial-value problem possesses infinitely many global-in-time weak solutions for any finite energy initial data. A modification of the method of convex integration is used to prove the result.
Název v anglickém jazyce
On weak solutions to a diffuse interface model of a binary mixture of compressible fluids
Popis výsledku anglicky
We consider the Euler-Cahn-Hilliard system proposed by Lowengrub and Truskinovsky describing the motion of a binary mixture of compressible fluids. We show that the associated initial-value problem possesses infinitely many global-in-time weak solutions for any finite energy initial data. A modification of the method of convex integration is used to prove the result.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-00522S" target="_blank" >GA13-00522S: Kvalitativní analýza a numerické řešení problémů proudění v obecně časově závislých oblastech s různými okrajovými podmínkami</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Continuous Dynamical systems - Series S
ISSN
1937-1632
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
173-183
Kód UT WoS článku
000369601800015
EID výsledku v databázi Scopus
2-s2.0-84958758166