Self-propelled motion in a viscous compressible fluid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458215" target="_blank" >RIV/67985840:_____/16:00458215 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S0308210515000487" target="_blank" >http://dx.doi.org/10.1017/S0308210515000487</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0308210515000487" target="_blank" >10.1017/S0308210515000487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-propelled motion in a viscous compressible fluid
Popis výsledku v původním jazyce
In this paper we focus on the existence of a weak solution to a system describing a self-propelled motion of a single deformable body in a viscous compressible fluid that occupies a bounded domain in the three-dimensional Euclidean space. The governing system considered for the fluid is the isentropic compressible Navier-Stokes equation. We prove the existence of a weak solution up to a collision.
Název v anglickém jazyce
Self-propelled motion in a viscous compressible fluid
Popis výsledku anglicky
In this paper we focus on the existence of a weak solution to a system describing a self-propelled motion of a single deformable body in a viscous compressible fluid that occupies a bounded domain in the three-dimensional Euclidean space. The governing system considered for the fluid is the isentropic compressible Navier-Stokes equation. We prove the existence of a weak solution up to a collision.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Royal Society of Edinburgh. A - Mathematics
ISSN
0308-2105
e-ISSN
—
Svazek periodika
146
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
415-433
Kód UT WoS článku
000373056000010
EID výsledku v databázi Scopus
2-s2.0-84962265744