Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Complexity of Universality for Partially Ordered NFAs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462042" target="_blank" >RIV/67985840:_____/16:00462042 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61" target="_blank" >10.4230/LIPIcs.MFCS.2016.61</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Complexity of Universality for Partially Ordered NFAs

  • Popis výsledku v původním jazyce

    Partially ordered nondeterminsitic finite automata (poNFAs) are NFAs whose transition relation induces a partial order on states, i.e., for which cycles occur only in the form of self-loops on a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding universality is PSpace-complete for poNFAs, and we show that this remains true even when restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that the symbol read in the loop cannot occur in any other transition from that state. We find that such restricted poNFAs (rpoNFAs) characterise the class of R-trivial languages, and we establish the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation to fixed alphabets turns out to be essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSPACE-complete. Our results also prove the complexity of the inclusion and equivalence problems, since universality provides the lower bound, while the upper bound is mostly known or proved in the paper.

  • Název v anglickém jazyce

    On the Complexity of Universality for Partially Ordered NFAs

  • Popis výsledku anglicky

    Partially ordered nondeterminsitic finite automata (poNFAs) are NFAs whose transition relation induces a partial order on states, i.e., for which cycles occur only in the form of self-loops on a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding universality is PSpace-complete for poNFAs, and we show that this remains true even when restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that the symbol read in the loop cannot occur in any other transition from that state. We find that such restricted poNFAs (rpoNFAs) characterise the class of R-trivial languages, and we establish the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation to fixed alphabets turns out to be essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSPACE-complete. Our results also prove the complexity of the inclusion and equivalence problems, since universality provides the lower bound, while the upper bound is mostly known or proved in the paper.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)

  • ISBN

    978-3-95977-016-3

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

  • Název nakladatele

    Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik

  • Místo vydání

    Dagstuhl

  • Místo konání akce

    Krakow

  • Datum konání akce

    22. 8. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku