On the Complexity of Universality for Partially Ordered NFAs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462042" target="_blank" >RIV/67985840:_____/16:00462042 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.61" target="_blank" >10.4230/LIPIcs.MFCS.2016.61</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Complexity of Universality for Partially Ordered NFAs
Popis výsledku v původním jazyce
Partially ordered nondeterminsitic finite automata (poNFAs) are NFAs whose transition relation induces a partial order on states, i.e., for which cycles occur only in the form of self-loops on a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding universality is PSpace-complete for poNFAs, and we show that this remains true even when restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that the symbol read in the loop cannot occur in any other transition from that state. We find that such restricted poNFAs (rpoNFAs) characterise the class of R-trivial languages, and we establish the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation to fixed alphabets turns out to be essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSPACE-complete. Our results also prove the complexity of the inclusion and equivalence problems, since universality provides the lower bound, while the upper bound is mostly known or proved in the paper.
Název v anglickém jazyce
On the Complexity of Universality for Partially Ordered NFAs
Popis výsledku anglicky
Partially ordered nondeterminsitic finite automata (poNFAs) are NFAs whose transition relation induces a partial order on states, i.e., for which cycles occur only in the form of self-loops on a single state. A poNFA is universal if it accepts all words over its input alphabet. Deciding universality is PSpace-complete for poNFAs, and we show that this remains true even when restricting to a fixed alphabet. This is nontrivial since standard encodings of alphabet symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound can be obtained if we require that all self-loops in the poNFA are deterministic, in the sense that the symbol read in the loop cannot occur in any other transition from that state. We find that such restricted poNFAs (rpoNFAs) characterise the class of R-trivial languages, and we establish the complexity of deciding if the language of an NFA is R-trivial. Nevertheless, the limitation to fixed alphabets turns out to be essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSPACE-complete. Our results also prove the complexity of the inclusion and equivalence problems, since universality provides the lower bound, while the upper bound is mostly known or proved in the paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)
ISBN
978-3-95977-016-3
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
14
Strana od-do
—
Název nakladatele
Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Krakow
Datum konání akce
22. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—