Complexity of universality and related problems for partially ordered NFAs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476953" target="_blank" >RIV/67985840:_____/17:00476953 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ic.2017.06.004" target="_blank" >http://dx.doi.org/10.1016/j.ic.2017.06.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ic.2017.06.004" target="_blank" >10.1016/j.ic.2017.06.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of universality and related problems for partially ordered NFAs
Popis výsledku v původním jazyce
Partially ordered NFAs (poNFAs) are NFAs where cycles occur only in the form of self-loops. A poNFA is universal if it accepts all words over its alphabet. Deciding universality is PSpace-complete for poNFAs. We show that this remains true when restricting to fixed alphabets. This is nontrivial since standard encodings of symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound is obtained if all self-loops in the poNFA are deterministic. We find that such restricted poNFAs (rpoNFAs) characterize R-trivial languages, and establish the complexity of deciding if the language of an NFA is R-trivial. The limitation to fixed alphabets is essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSpace-complete. Consequently, we obtain the complexity results for inclusion and equivalence problems. Finally, we show that the languages of rpoNFAs are definable by deterministic regular expressions.
Název v anglickém jazyce
Complexity of universality and related problems for partially ordered NFAs
Popis výsledku anglicky
Partially ordered NFAs (poNFAs) are NFAs where cycles occur only in the form of self-loops. A poNFA is universal if it accepts all words over its alphabet. Deciding universality is PSpace-complete for poNFAs. We show that this remains true when restricting to fixed alphabets. This is nontrivial since standard encodings of symbols in, e.g., binary can turn self-loops into longer cycles. A lower coNP-complete complexity bound is obtained if all self-loops in the poNFA are deterministic. We find that such restricted poNFAs (rpoNFAs) characterize R-trivial languages, and establish the complexity of deciding if the language of an NFA is R-trivial. The limitation to fixed alphabets is essential even in the restricted case: deciding universality of rpoNFAs with unbounded alphabets is PSpace-complete. Consequently, we obtain the complexity results for inclusion and equivalence problems. Finally, we show that the languages of rpoNFAs are definable by deterministic regular expressions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information and Computation
ISSN
0890-5401
e-ISSN
—
Svazek periodika
255
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
177-192
Kód UT WoS článku
000407658600009
EID výsledku v databázi Scopus
2-s2.0-85022196483