Partition expanders
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00473687" target="_blank" >RIV/67985840:_____/17:00473687 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00224-016-9738-5" target="_blank" >http://dx.doi.org/10.1007/s00224-016-9738-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00224-016-9738-5" target="_blank" >10.1007/s00224-016-9738-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Partition expanders
Popis výsledku v původním jazyce
We introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any pair of sufficiently large sets is close to the expected number, we consider partitions and require this condition only for most of the pairs of blocks. As a result, the blocks can be substantially smaller. We show that for some range of parameters, to be a partition expander a random graph needs exponentially smaller degree than any expander would require in order to achieve similar expanding properties. We apply the concept of partition expanders in communication complexity. First, we construct an optimal pseudo-random generator (PRG) for the Simultaneous Message Passing (SMP) model: it needs n + log k random bits against protocols of cost Omega(k).
Název v anglickém jazyce
Partition expanders
Popis výsledku anglicky
We introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any pair of sufficiently large sets is close to the expected number, we consider partitions and require this condition only for most of the pairs of blocks. As a result, the blocks can be substantially smaller. We show that for some range of parameters, to be a partition expander a random graph needs exponentially smaller degree than any expander would require in order to achieve similar expanding properties. We apply the concept of partition expanders in communication complexity. First, we construct an optimal pseudo-random generator (PRG) for the Simultaneous Message Passing (SMP) model: it needs n + log k random bits against protocols of cost Omega(k).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
378-395
Kód UT WoS článku
000398890500001
EID výsledku v databázi Scopus
2-s2.0-85006124086