Efimov spaces and the separable quotient problem for spaces C-P(K)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00480123" target="_blank" >RIV/67985840:_____/18:00480123 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.08.010" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2017.08.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.08.010" target="_blank" >10.1016/j.jmaa.2017.08.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efimov spaces and the separable quotient problem for spaces C-P(K)
Popis výsledku v původním jazyce
The classic Rosenthal-Lacey theorem asserts that the Banach space C(K)of continuous real-valued maps on an infinite compact space K has a quotient isomorphic to c or ...2. More recently, Kakol and Saxon [20] proved that the space Cp(K) endowed with the pointwise topology has an infinite-dimensional separable quotient algebra iff K has an infinite countable closed subset. Hence Cp(betaN) lacks infinite-dimensional separable quotient algebras. This motivates the following question: (...) Does Cp(K) admit an infinite-dimensional separable quotient (shortly SQ) for any infinite compact space K? Particularly, does Cp(betaN) admit SQ? Our main theorem implies that Cp(K) has SQ for any compact space K containing a copy of betaN. Consequently, this result reduces problem (...) to the case when K is an Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of betaN).
Název v anglickém jazyce
Efimov spaces and the separable quotient problem for spaces C-P(K)
Popis výsledku anglicky
The classic Rosenthal-Lacey theorem asserts that the Banach space C(K)of continuous real-valued maps on an infinite compact space K has a quotient isomorphic to c or ...2. More recently, Kakol and Saxon [20] proved that the space Cp(K) endowed with the pointwise topology has an infinite-dimensional separable quotient algebra iff K has an infinite countable closed subset. Hence Cp(betaN) lacks infinite-dimensional separable quotient algebras. This motivates the following question: (...) Does Cp(K) admit an infinite-dimensional separable quotient (shortly SQ) for any infinite compact space K? Particularly, does Cp(betaN) admit SQ? Our main theorem implies that Cp(K) has SQ for any compact space K containing a copy of betaN. Consequently, this result reduces problem (...) to the case when K is an Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of betaN).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
457
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
104-113
Kód UT WoS článku
000412152100007
EID výsledku v databázi Scopus
2-s2.0-85027490226