Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505923" target="_blank" >RIV/67985840:_____/19:00505923 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-17376-0_10" target="_blank" >http://dx.doi.org/10.1007/978-3-030-17376-0_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17376-0_10" target="_blank" >10.1007/978-3-030-17376-0_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces
Popis výsledku v původním jazyce
The famous Rosenthal-Lacey theorem states that for each infinite compact set K the Banach space C(K) of continuous real-valued functions on a compact space K admits a quotient which is either an isomorphic copy of c or ℓ2. Whether C(K) admits an infinite dimensional separable (or even metrizable) Hausdorff quotient when the uniform topology of C(K) is replaced by the pointwise topology remains as an open question. The present survey paper gathers several results concerning this question for the space Cp(K) of continuous real-valued functions endowed with the pointwise topology. Among others, that Cp(K) has an infinite dimensional separable quotient for any compact space K containing a opy of βN. Consequently, this result reduces the above question to the case when K is a Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of βN). On the other hand, although it is unknown if Efimov spaces exist in ZFC, we note under (applying some result due to R. de la Vega), that for some Efimov space K the space Cp(K) has an infinite dimensional (even metrizable) separable quotient. The last part discusses the so-called Josefson–Nissenzweig property for spaces Cp(K), introduced recently in [3], and its relation with the separable quotient problem for spaces Cp(K).
Název v anglickém jazyce
Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces
Popis výsledku anglicky
The famous Rosenthal-Lacey theorem states that for each infinite compact set K the Banach space C(K) of continuous real-valued functions on a compact space K admits a quotient which is either an isomorphic copy of c or ℓ2. Whether C(K) admits an infinite dimensional separable (or even metrizable) Hausdorff quotient when the uniform topology of C(K) is replaced by the pointwise topology remains as an open question. The present survey paper gathers several results concerning this question for the space Cp(K) of continuous real-valued functions endowed with the pointwise topology. Among others, that Cp(K) has an infinite dimensional separable quotient for any compact space K containing a opy of βN. Consequently, this result reduces the above question to the case when K is a Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of βN). On the other hand, although it is unknown if Efimov spaces exist in ZFC, we note under (applying some result due to R. de la Vega), that for some Efimov space K the space Cp(K) has an infinite dimensional (even metrizable) separable quotient. The last part discusses the so-called Josefson–Nissenzweig property for spaces Cp(K), introduced recently in [3], and its relation with the separable quotient problem for spaces Cp(K).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Descriptive Topology and Functional Analysis II
ISBN
978-3-030-17375-3
ISSN
2194-1009
e-ISSN
—
Počet stran výsledku
15
Strana od-do
175-189
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Elche
Datum konání akce
7. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—