A weighted finite element mass redistribution method for dynamic contact problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00491866" target="_blank" >RIV/67985840:_____/19:00491866 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2018.06.030" target="_blank" >http://dx.doi.org/10.1016/j.cam.2018.06.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2018.06.030" target="_blank" >10.1016/j.cam.2018.06.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A weighted finite element mass redistribution method for dynamic contact problems
Popis výsledku v původním jazyce
This paper deals with a one-dimensional wave equation being subjected to a unilateral boundary condition. An approximation of this problem combining the finite element and mass redistribution methods is proposed. The mass redistribution method is based on a redistribution of the body mass such that there is no inertia at the contact node and the mass of the contact node is redistributed on the other nodes. The convergence as well as an error estimate in time is proved. The analytical solution associated with a benchmark problem is introduced and it is compared to approximate solutions for different choices of mass redistribution. However some oscillations for the energy associated with approximate solutions obtained for the second order schemes can be observed after the impact. To overcome this difficulty, a new unconditionally stable and a very lightly dissipative scheme is proposed.
Název v anglickém jazyce
A weighted finite element mass redistribution method for dynamic contact problems
Popis výsledku anglicky
This paper deals with a one-dimensional wave equation being subjected to a unilateral boundary condition. An approximation of this problem combining the finite element and mass redistribution methods is proposed. The mass redistribution method is based on a redistribution of the body mass such that there is no inertia at the contact node and the mass of the contact node is redistributed on the other nodes. The convergence as well as an error estimate in time is proved. The analytical solution associated with a benchmark problem is introduced and it is compared to approximate solutions for different choices of mass redistribution. However some oscillations for the energy associated with approximate solutions obtained for the second order schemes can be observed after the impact. To overcome this difficulty, a new unconditionally stable and a very lightly dissipative scheme is proposed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-12227S" target="_blank" >GA15-12227S: Analýza matematických modelů multifunkčních materiálů s hysterezí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
345
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
338-356
Kód UT WoS článku
000447084300025
EID výsledku v databázi Scopus
2-s2.0-85049775122