Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F19%3A10242667" target="_blank" >RIV/61989100:27230/19:10242667 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/19:10242667
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.5443" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.5443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.5443" target="_blank" >10.1002/mma.5443</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation
Popis výsledku v původním jazyce
For the power law Stokes equations driven by nonlinear slip boundary conditions of friction type, we propose three iterative schemes based on augmented Lagrangian approach and interior point method to solve the finite element approximation associated to the continuous problem. We formulate the variational problem which in this case is a variational inequality and construct the weak solution of the continuous problem. Next, we formulate two alternating direction methods based on augmented Lagrangian formalism in order to separate the velocity from the symmetric part the velocity gradient and tangential part of the velocity. Thirdly, we present some salient points of a path-following variant of the interior point method associated to the finite element approximation of the problem. Some numerical experiments are performed to confirm the validity of the schemes and allow us to compare them.
Název v anglickém jazyce
Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation
Popis výsledku anglicky
For the power law Stokes equations driven by nonlinear slip boundary conditions of friction type, we propose three iterative schemes based on augmented Lagrangian approach and interior point method to solve the finite element approximation associated to the continuous problem. We formulate the variational problem which in this case is a variational inequality and construct the weak solution of the continuous problem. Next, we formulate two alternating direction methods based on augmented Lagrangian formalism in order to separate the velocity from the symmetric part the velocity gradient and tangential part of the velocity. Thirdly, we present some salient points of a path-following variant of the interior point method associated to the finite element approximation of the problem. Some numerical experiments are performed to confirm the validity of the schemes and allow us to compare them.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
1488-1511
Kód UT WoS článku
000461898000011
EID výsledku v databázi Scopus
2-s2.0-85059831059