Ergodic and dynamical properties of m-isometries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00494453" target="_blank" >RIV/67985840:_____/19:00494453 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.laa.2018.09.022" target="_blank" >http://dx.doi.org/10.1016/j.laa.2018.09.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2018.09.022" target="_blank" >10.1016/j.laa.2018.09.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ergodic and dynamical properties of m-isometries
Popis výsledku v původním jazyce
An example of a weakly ergodic 3-isometry is provided in [3], we give new examples of weakly ergodic 3-isometries and study numerically hypercyclic m-isometries on finite and infinite dimensional Hilbert spaces. In particular, all weakly ergodic strict 3-isometries on a Hilbert space are weakly numerically hypercyclic. Adjoints of unilateral forward weighted shifts which are strict m-isometries on ℓ2(N) are shown to be hypercyclic.
Název v anglickém jazyce
Ergodic and dynamical properties of m-isometries
Popis výsledku anglicky
An example of a weakly ergodic 3-isometry is provided in [3], we give new examples of weakly ergodic 3-isometries and study numerically hypercyclic m-isometries on finite and infinite dimensional Hilbert spaces. In particular, all weakly ergodic strict 3-isometries on a Hilbert space are weakly numerically hypercyclic. Adjoints of unilateral forward weighted shifts which are strict m-isometries on ℓ2(N) are shown to be hypercyclic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-27844S" target="_blank" >GA17-27844S: Generické objekty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
561
Číslo periodika v rámci svazku
15 January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
98-112
Kód UT WoS článku
000450385500006
EID výsledku v databázi Scopus
2-s2.0-85054168905