Property (T), finite-dimensional representations, and generic representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00498908" target="_blank" >RIV/67985840:_____/19:00498908 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/jgth-2018-0030" target="_blank" >http://dx.doi.org/10.1515/jgth-2018-0030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jgth-2018-0030" target="_blank" >10.1515/jgth-2018-0030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Property (T), finite-dimensional representations, and generic representations
Popis výsledku v původním jazyce
Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space H {mathcal{H}}, almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that, if a unitary representation has some vector whose coefficient function is close to a coefficient function of some finite-dimensional unitary representation σ, then the vector is close to a sub-representation isomorphic to σ: this makes quantitative a result of P. S. Wang. We use that to give a new proof of a result by D. Kerr, H. Li and M. Pichot, that a group G with Property (T) and such that C ∗(G) {C^{∗}(G)} is residually finite-dimensional, admits a unitary representation which is generic (i.e. the orbit of this representation in Rep(G, H) {Rep(G,mathcal{H})} under the unitary group U(H) {U(mathcal{H})} is comeager). We also show that, under the same assumptions, the set of representations equivalent to a Koopman representation is comeager in Rep(G, H) {mathrm{Rep}(G,mathcal{H})}.
Název v anglickém jazyce
Property (T), finite-dimensional representations, and generic representations
Popis výsledku anglicky
Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space H {mathcal{H}}, almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that, if a unitary representation has some vector whose coefficient function is close to a coefficient function of some finite-dimensional unitary representation σ, then the vector is close to a sub-representation isomorphic to σ: this makes quantitative a result of P. S. Wang. We use that to give a new proof of a result by D. Kerr, H. Li and M. Pichot, that a group G with Property (T) and such that C ∗(G) {C^{∗}(G)} is residually finite-dimensional, admits a unitary representation which is generic (i.e. the orbit of this representation in Rep(G, H) {Rep(G,mathcal{H})} under the unitary group U(H) {U(mathcal{H})} is comeager). We also show that, under the same assumptions, the set of representations equivalent to a Koopman representation is comeager in Rep(G, H) {mathrm{Rep}(G,mathcal{H})}.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Group Theory
ISSN
1433-5883
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000454602000001
EID výsledku v databázi Scopus
2-s2.0-85052713220