Generic representations of countable groups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00512066" target="_blank" >RIV/67985840:_____/19:00512066 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1090/tran/7932" target="_blank" >http://dx.doi.org/10.1090/tran/7932</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/7932" target="_blank" >10.1090/tran/7932</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generic representations of countable groups
Popis výsledku v původním jazyce
The paper is devoted to a study of generic representations (homomorphisms) of discrete countable groups Γ in Polish groups G, i.e., elements in the Polish space Rep(Γ, G) of all representations of Γ in G whose orbits under the conjugation action of G on Rep(Γ, G) are comeager. We investigate a closely related notion of finite approximability of actions on countable structures such as tournaments or Kn-free graphs, and we show its connections with Ribes-Zalesskii-like properties of the acting groups. We prove that Z has a generic representation in the automorphism group of the random tournament (i.e., there is a comeager conjugacy class in this group). We formulate a Ribes-Zalesskii-like condition on a group that guarantees finite approximability of its actions on tournaments. We also provide a simpler proof of a result of Glasner, Kitroser, and Melleray characterizing groups with a generic permutation representation. We also investigate representations of infinite groups Γ in automorphism groups of metric structures such as the isometry group Iso(U) of the Urysohn space, isometry group Iso(U1) of the Urysohn sphere, or the linear isometry group LIso(G) of the Gurarii space. We show that the conjugation action of Iso(U) on Rep(Γ, Iso(U)) is generically turbulent, answering a question of Kechris and Rosendal.
Název v anglickém jazyce
Generic representations of countable groups
Popis výsledku anglicky
The paper is devoted to a study of generic representations (homomorphisms) of discrete countable groups Γ in Polish groups G, i.e., elements in the Polish space Rep(Γ, G) of all representations of Γ in G whose orbits under the conjugation action of G on Rep(Γ, G) are comeager. We investigate a closely related notion of finite approximability of actions on countable structures such as tournaments or Kn-free graphs, and we show its connections with Ribes-Zalesskii-like properties of the acting groups. We prove that Z has a generic representation in the automorphism group of the random tournament (i.e., there is a comeager conjugacy class in this group). We formulate a Ribes-Zalesskii-like condition on a group that guarantees finite approximability of its actions on tournaments. We also provide a simpler proof of a result of Glasner, Kitroser, and Melleray characterizing groups with a generic permutation representation. We also investigate representations of infinite groups Γ in automorphism groups of metric structures such as the isometry group Iso(U) of the Urysohn space, isometry group Iso(U1) of the Urysohn sphere, or the linear isometry group LIso(G) of the Gurarii space. We show that the conjugation action of Iso(U) on Rep(Γ, Iso(U)) is generically turbulent, answering a question of Kechris and Rosendal.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
American Mathematical Society. Transactions
ISSN
0002-9947
e-ISSN
—
Svazek periodika
372
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
8249-8277
Kód UT WoS článku
000514303900025
EID výsledku v databázi Scopus
2-s2.0-85075129194