Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Universal actions and representations of locally finite groups on metric spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505502" target="_blank" >RIV/67985840:_____/19:00505502 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s11856-019-1856-8" target="_blank" >http://dx.doi.org/10.1007/s11856-019-1856-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-019-1856-8" target="_blank" >10.1007/s11856-019-1856-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Universal actions and representations of locally finite groups on metric spaces

  • Popis výsledku v původním jazyce

    We construct a universal action of a countable locally finite group (the Hall group) on a separable metric space by isometries. This single action contains all actions of all countable locally finite groups on all separable metric spaces as subactions. The main ingredient is the amalgamation of actions by isometries. We show that an equivalence class of this universal action is generic. We show that the restriction to locally finite groups in our results is necessary as analogous results do not hold for infinite non-locally finite groups. We discuss the problem also for actions by linear isometries on Banach spaces.

  • Název v anglickém jazyce

    Universal actions and representations of locally finite groups on metric spaces

  • Popis výsledku anglicky

    We construct a universal action of a countable locally finite group (the Hall group) on a separable metric space by isometries. This single action contains all actions of all countable locally finite groups on all separable metric spaces as subactions. The main ingredient is the amalgamation of actions by isometries. We show that an equivalence class of this universal action is generic. We show that the restriction to locally finite groups in our results is necessary as analogous results do not hold for infinite non-locally finite groups. We discuss the problem also for actions by linear isometries on Banach spaces.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Svazek periodika

    231

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IL - Stát Izrael

  • Počet stran výsledku

    35

  • Strana od-do

    343-377

  • Kód UT WoS článku

    000470717200011

  • EID výsledku v databázi Scopus

    2-s2.0-85067019903