Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An overlapping Schwarz method for virtual element discretizations in two dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505500" target="_blank" >RIV/67985840:_____/19:00505500 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.camwa.2018.10.043" target="_blank" >http://dx.doi.org/10.1016/j.camwa.2018.10.043</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2018.10.043" target="_blank" >10.1016/j.camwa.2018.10.043</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An overlapping Schwarz method for virtual element discretizations in two dimensions

  • Popis výsledku v původním jazyce

    A new coarse space for domain decomposition methods is presented for nodal elliptic problems in two dimensions. The coarse space is derived from the novel virtual element methods and therefore can accommodate quite irregular polygonal subdomains. It has the advantage with respect to previous studies that no discrete harmonic extensions are required. The virtual element method allows us to handle polygonal meshes and the algorithm can then be used as a preconditioner for linear systems that arise from a discretization with such triangulations. A bound is obtained for the condition number of the preconditioned system by using a two-level overlapping Schwarz algorithm, but the coarse space can also be used for different substructuring methods. This bound is independent of jumps in the coefficient across the interface between the subdomains. Numerical experiments that verify the result are shown, including some with triangular, square, hexagonal and irregular elements and with irregular subdomains obtained by a mesh partitioner.

  • Název v anglickém jazyce

    An overlapping Schwarz method for virtual element discretizations in two dimensions

  • Popis výsledku anglicky

    A new coarse space for domain decomposition methods is presented for nodal elliptic problems in two dimensions. The coarse space is derived from the novel virtual element methods and therefore can accommodate quite irregular polygonal subdomains. It has the advantage with respect to previous studies that no discrete harmonic extensions are required. The virtual element method allows us to handle polygonal meshes and the algorithm can then be used as a preconditioner for linear systems that arise from a discretization with such triangulations. A bound is obtained for the condition number of the preconditioned system by using a two-level overlapping Schwarz algorithm, but the coarse space can also be used for different substructuring methods. This bound is independent of jumps in the coefficient across the interface between the subdomains. Numerical experiments that verify the result are shown, including some with triangular, square, hexagonal and irregular elements and with irregular subdomains obtained by a mesh partitioner.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers & Mathematics With Applications

  • ISSN

    0898-1221

  • e-ISSN

  • Svazek periodika

    77

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    1163-1177

  • Kód UT WoS článku

    000459529100017

  • EID výsledku v databázi Scopus

    2-s2.0-85056497711