An overlapping Schwarz method for virtual element discretizations in two dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505500" target="_blank" >RIV/67985840:_____/19:00505500 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.camwa.2018.10.043" target="_blank" >http://dx.doi.org/10.1016/j.camwa.2018.10.043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2018.10.043" target="_blank" >10.1016/j.camwa.2018.10.043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An overlapping Schwarz method for virtual element discretizations in two dimensions
Popis výsledku v původním jazyce
A new coarse space for domain decomposition methods is presented for nodal elliptic problems in two dimensions. The coarse space is derived from the novel virtual element methods and therefore can accommodate quite irregular polygonal subdomains. It has the advantage with respect to previous studies that no discrete harmonic extensions are required. The virtual element method allows us to handle polygonal meshes and the algorithm can then be used as a preconditioner for linear systems that arise from a discretization with such triangulations. A bound is obtained for the condition number of the preconditioned system by using a two-level overlapping Schwarz algorithm, but the coarse space can also be used for different substructuring methods. This bound is independent of jumps in the coefficient across the interface between the subdomains. Numerical experiments that verify the result are shown, including some with triangular, square, hexagonal and irregular elements and with irregular subdomains obtained by a mesh partitioner.
Název v anglickém jazyce
An overlapping Schwarz method for virtual element discretizations in two dimensions
Popis výsledku anglicky
A new coarse space for domain decomposition methods is presented for nodal elliptic problems in two dimensions. The coarse space is derived from the novel virtual element methods and therefore can accommodate quite irregular polygonal subdomains. It has the advantage with respect to previous studies that no discrete harmonic extensions are required. The virtual element method allows us to handle polygonal meshes and the algorithm can then be used as a preconditioner for linear systems that arise from a discretization with such triangulations. A bound is obtained for the condition number of the preconditioned system by using a two-level overlapping Schwarz algorithm, but the coarse space can also be used for different substructuring methods. This bound is independent of jumps in the coefficient across the interface between the subdomains. Numerical experiments that verify the result are shown, including some with triangular, square, hexagonal and irregular elements and with irregular subdomains obtained by a mesh partitioner.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Mathematics With Applications
ISSN
0898-1221
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1163-1177
Kód UT WoS článku
000459529100017
EID výsledku v databázi Scopus
2-s2.0-85056497711