Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452950" target="_blank" >RIV/00216208:11320/22:10452950 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v3ZKdCONje" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v3ZKdCONje</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10444-022-09968-w" target="_blank" >10.1007/s10444-022-09968-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes
Popis výsledku v původním jazyce
This article considers the extension of two-grid hp-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems of monotone type to the case when agglomerated polygonal/polyhedral meshes are employed for the coarse mesh approximation. We recall that within the two-grid setting, while it is necessary to solve a nonlinear problem on the coarse approximation space, only a linear problem must be computed on the original fine finite element space. In this article, the coarse space will be constructed by agglomerating elements from the original fine mesh. Here, we extend the existing a priori and a posteriori error analysis for the two-grid hp-version discontinuous Galerkin finite element method from Congreve et al. [1] for coarse meshes consisting of standard element shapes to include arbitrarily agglomerated coarse grids. Moreover, we develop an hp-adaptive two-grid algorithm to adaptively design the fine and coarse finite element spaces; we stress that this is undertaken in a fully automatic manner, and hence can be viewed as blackbox solver. Numerical experiments are presented for two- and three-dimensional problems to demonstrate the computational performance of the proposed hp-adaptive two-grid method.
Název v anglickém jazyce
Two-grid hp-version discontinuous Galerkin finite element methods for quasilinear elliptic PDEs on agglomerated coarse meshes
Popis výsledku anglicky
This article considers the extension of two-grid hp-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems of monotone type to the case when agglomerated polygonal/polyhedral meshes are employed for the coarse mesh approximation. We recall that within the two-grid setting, while it is necessary to solve a nonlinear problem on the coarse approximation space, only a linear problem must be computed on the original fine finite element space. In this article, the coarse space will be constructed by agglomerating elements from the original fine mesh. Here, we extend the existing a priori and a posteriori error analysis for the two-grid hp-version discontinuous Galerkin finite element method from Congreve et al. [1] for coarse meshes consisting of standard element shapes to include arbitrarily agglomerated coarse grids. Moreover, we develop an hp-adaptive two-grid algorithm to adaptively design the fine and coarse finite element spaces; we stress that this is undertaken in a fully automatic manner, and hence can be viewed as blackbox solver. Numerical experiments are presented for two- and three-dimensional problems to demonstrate the computational performance of the proposed hp-adaptive two-grid method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Computational Mathematics
ISSN
1019-7168
e-ISSN
1572-9044
Svazek periodika
48
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
31
Strana od-do
54
Kód UT WoS článku
000839636700001
EID výsledku v databázi Scopus
2-s2.0-85147148016