hp-ADAPTATION DRIVEN BY POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10330313" target="_blank" >RIV/00216208:11320/16:10330313 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/15M1026687" target="_blank" >http://dx.doi.org/10.1137/15M1026687</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/15M1026687" target="_blank" >10.1137/15M1026687</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
hp-ADAPTATION DRIVEN BY POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
Popis výsledku v původním jazyce
We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, for spatially varying polynomial degree, and for mixed rectangular-triangular grids possibly containing hanging nodes. They deliver a global error upper bound with constant one and, up to data oscillation, error lower bounds on element patches with a generic constant dependent only on the mesh regularity and with a computable bound. We numerically assess the estimates and several hp-adaptive strategies using the interior penalty discontinuous Galerkin method. Asymptotic exactness is observed for all the symmetric, nonsymmetric (odd degrees), and incomplete variants on nonnested unstructured triangular grids for a smooth solution and uniform refinement. Exponential convergence rates are reported on nonmatching triangular grids for the incomplete version on several benchmarks with a singular solution and adaptive refinement.
Název v anglickém jazyce
hp-ADAPTATION DRIVEN BY POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
Popis výsledku anglicky
We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, for spatially varying polynomial degree, and for mixed rectangular-triangular grids possibly containing hanging nodes. They deliver a global error upper bound with constant one and, up to data oscillation, error lower bounds on element patches with a generic constant dependent only on the mesh regularity and with a computable bound. We numerically assess the estimates and several hp-adaptive strategies using the interior penalty discontinuous Galerkin method. Asymptotic exactness is observed for all the symmetric, nonsymmetric (odd degrees), and incomplete variants on nonnested unstructured triangular grids for a smooth solution and uniform refinement. Exponential convergence rates are reported on nonmatching triangular grids for the incomplete version on several benchmarks with a singular solution and adaptive refinement.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
"A3220"-"A3246"
Kód UT WoS článku
000387347700072
EID výsledku v databázi Scopus
2-s2.0-84994104700