On the Shannon entropy of the number of vertices with zero in-degree in randomly oriented hypergraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00507737" target="_blank" >RIV/67985840:_____/19:00507737 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4418/2019.74.1.8" target="_blank" >http://dx.doi.org/10.4418/2019.74.1.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4418/2019.74.1.8" target="_blank" >10.4418/2019.74.1.8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Shannon entropy of the number of vertices with zero in-degree in randomly oriented hypergraphs
Popis výsledku v původním jazyce
Suppose that you have n colours and m mutually independent dice, each of which has r sides. Each dice lands on any of its sides with equal probability. You may colour the sides of each die in any way you wish, but there is one restriction: you are not allowed to use the same colour more than once on the sides of a die. Any other colouring is allowed. Let X be the number of different colours that you see after rolling the dice. How should you colour the sides of the dice in order to maximize the Shannon entropy of X? In this article we investigate this question. It is shown that the entropy of X is at most 1/2 log(n/2 + 16 + 1/2) log(πe) and that the bound is tight, up to a constant additive factor, in the case of there being equally many coins and colours. Our proof employs the differential entropy bound on discrete entropy, along with a lower bound on the entropy of binomial random variables whose outcome is conditioned to be an even integer. We conjecture that the entropy is maximized when the colours are distributed over the sides of the dice as evenly as possible.
Název v anglickém jazyce
On the Shannon entropy of the number of vertices with zero in-degree in randomly oriented hypergraphs
Popis výsledku anglicky
Suppose that you have n colours and m mutually independent dice, each of which has r sides. Each dice lands on any of its sides with equal probability. You may colour the sides of each die in any way you wish, but there is one restriction: you are not allowed to use the same colour more than once on the sides of a die. Any other colouring is allowed. Let X be the number of different colours that you see after rolling the dice. How should you colour the sides of the dice in order to maximize the Shannon entropy of X? In this article we investigate this question. It is shown that the entropy of X is at most 1/2 log(n/2 + 16 + 1/2) log(πe) and that the bound is tight, up to a constant additive factor, in the case of there being equally many coins and colours. Our proof employs the differential entropy bound on discrete entropy, along with a lower bound on the entropy of binomial random variables whose outcome is conditioned to be an even integer. We conjecture that the entropy is maximized when the colours are distributed over the sides of the dice as evenly as possible.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-01472Y" target="_blank" >GJ18-01472Y: Limity grafů a nehomogenní náhodné grafy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Le Matematiche
ISSN
0373-3505
e-ISSN
—
Svazek periodika
74
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
12
Strana od-do
119-130
Kód UT WoS článku
000470736200008
EID výsledku v databázi Scopus
2-s2.0-85069525062