Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00509632" target="_blank" >RIV/67985840:_____/19:00509632 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/imanum/dry057" target="_blank" >http://dx.doi.org/10.1093/imanum/dry057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/dry057" target="_blank" >10.1093/imanum/dry057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme
Popis výsledku v původním jazyce
We propose a combined finite volume--finite element method for the compressible Navier–Stokes–Fourier system. A finite volume approximation is used for the density and energy equations while a finite element discretization based on the nonconforming Crouzeix–Raviart element is applied to the momentum equation. We show the stability, the consistency and finally the convergence of the scheme (up to a subsequence) toward a suitable weak solution. We are interested in the diffusive term in the form of divergence of the symmetric velocity gradient instead of the classical Laplace form appearing in the momentum equation. As a consequence, there emerges the need to add a stabilization term that substitutes the role of Korn’s inequality which does not hold in the Crouzeix–Raviart element space. The present work is a continuation of Feireisl, E., Hošek, R. & Michálek, M. (2016, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal., 36, 1477--1535), where a similar scheme is studied for the case of classical Laplace diffusion. We compare the two schemes and point out that the discretization of the energy diffusion terms in the reference scheme is not compatible with the model. Finally, we provide several numerical experiments for both schemes to demonstrate the numerical convergence, positivity of the discrete density, as well as the difference between the schemes.
Název v anglickém jazyce
Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme
Popis výsledku anglicky
We propose a combined finite volume--finite element method for the compressible Navier–Stokes–Fourier system. A finite volume approximation is used for the density and energy equations while a finite element discretization based on the nonconforming Crouzeix–Raviart element is applied to the momentum equation. We show the stability, the consistency and finally the convergence of the scheme (up to a subsequence) toward a suitable weak solution. We are interested in the diffusive term in the form of divergence of the symmetric velocity gradient instead of the classical Laplace form appearing in the momentum equation. As a consequence, there emerges the need to add a stabilization term that substitutes the role of Korn’s inequality which does not hold in the Crouzeix–Raviart element space. The present work is a continuation of Feireisl, E., Hošek, R. & Michálek, M. (2016, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal., 36, 1477--1535), where a similar scheme is studied for the case of classical Laplace diffusion. We compare the two schemes and point out that the discretization of the energy diffusion terms in the reference scheme is not compatible with the model. Finally, we provide several numerical experiments for both schemes to demonstrate the numerical convergence, positivity of the discrete density, as well as the difference between the schemes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
2045-2068
Kód UT WoS článku
000491253300015
EID výsledku v databázi Scopus
2-s2.0-85074151949