Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00509632" target="_blank" >RIV/67985840:_____/19:00509632 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1093/imanum/dry057" target="_blank" >http://dx.doi.org/10.1093/imanum/dry057</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imanum/dry057" target="_blank" >10.1093/imanum/dry057</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme

  • Popis výsledku v původním jazyce

    We propose a combined finite volume--finite element method for the compressible Navier–Stokes–Fourier system. A finite volume approximation is used for the density and energy equations while a finite element discretization based on the nonconforming Crouzeix–Raviart element is applied to the momentum equation. We show the stability, the consistency and finally the convergence of the scheme (up to a subsequence) toward a suitable weak solution. We are interested in the diffusive term in the form of divergence of the symmetric velocity gradient instead of the classical Laplace form appearing in the momentum equation. As a consequence, there emerges the need to add a stabilization term that substitutes the role of Korn’s inequality which does not hold in the Crouzeix–Raviart element space. The present work is a continuation of Feireisl, E., Hošek, R. & Michálek, M. (2016, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal., 36, 1477--1535), where a similar scheme is studied for the case of classical Laplace diffusion. We compare the two schemes and point out that the discretization of the energy diffusion terms in the reference scheme is not compatible with the model. Finally, we provide several numerical experiments for both schemes to demonstrate the numerical convergence, positivity of the discrete density, as well as the difference between the schemes.

  • Název v anglickém jazyce

    Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme

  • Popis výsledku anglicky

    We propose a combined finite volume--finite element method for the compressible Navier–Stokes–Fourier system. A finite volume approximation is used for the density and energy equations while a finite element discretization based on the nonconforming Crouzeix–Raviart element is applied to the momentum equation. We show the stability, the consistency and finally the convergence of the scheme (up to a subsequence) toward a suitable weak solution. We are interested in the diffusive term in the form of divergence of the symmetric velocity gradient instead of the classical Laplace form appearing in the momentum equation. As a consequence, there emerges the need to add a stabilization term that substitutes the role of Korn’s inequality which does not hold in the Crouzeix–Raviart element space. The present work is a continuation of Feireisl, E., Hošek, R. & Michálek, M. (2016, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal., 36, 1477--1535), where a similar scheme is studied for the case of classical Laplace diffusion. We compare the two schemes and point out that the discretization of the energy diffusion terms in the reference scheme is not compatible with the model. Finally, we provide several numerical experiments for both schemes to demonstrate the numerical convergence, positivity of the discrete density, as well as the difference between the schemes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IMA Journal of Numerical Analysis

  • ISSN

    0272-4979

  • e-ISSN

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

    2045-2068

  • Kód UT WoS článku

    000491253300015

  • EID výsledku v databázi Scopus

    2-s2.0-85074151949