Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Diffeological statistical models, the Fisher metric and probabilistic mappings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521519" target="_blank" >RIV/67985840:_____/20:00521519 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/math8020167" target="_blank" >https://doi.org/10.3390/math8020167</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8020167" target="_blank" >10.3390/math8020167</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Diffeological statistical models, the Fisher metric and probabilistic mappings

  • Popis výsledku v původním jazyce

    We introduce the notion of a C^k -diffeological statistical model, which allows us to apply the theory of diffeological spaces to (possibly singular) statistical models. In particular, we introduce a class of almost 2-integrable C^k -diffeological statistical models that encompasses all known statistical models for which the Fisher metric is defined. This class contains a statistical model which does not appear in the Ay–Jost–Lê–Schwachhöfer theory of parametrized measure models. Then, we show that, for any positive integer k , the class of almost 2-integrable C^k -diffeological statistical models is preserved under probabilistic mappings. Furthermore, the monotonicity Theorem for the Fisher metric also holds for this class. As a consequence, the Fisher metric on an almost 2-integrable C^k -diffeological statistical model P⊂P(X) is preserved under any probabilistic mapping T:X⇝Y that is sufficient w.r.t. P. Finally, we extend the Cramér–Rao inequality to the class of 2-integrable C^k -diffeological statistical models.

  • Název v anglickém jazyce

    Diffeological statistical models, the Fisher metric and probabilistic mappings

  • Popis výsledku anglicky

    We introduce the notion of a C^k -diffeological statistical model, which allows us to apply the theory of diffeological spaces to (possibly singular) statistical models. In particular, we introduce a class of almost 2-integrable C^k -diffeological statistical models that encompasses all known statistical models for which the Fisher metric is defined. This class contains a statistical model which does not appear in the Ay–Jost–Lê–Schwachhöfer theory of parametrized measure models. Then, we show that, for any positive integer k , the class of almost 2-integrable C^k -diffeological statistical models is preserved under probabilistic mappings. Furthermore, the monotonicity Theorem for the Fisher metric also holds for this class. As a consequence, the Fisher metric on an almost 2-integrable C^k -diffeological statistical model P⊂P(X) is preserved under any probabilistic mapping T:X⇝Y that is sufficient w.r.t. P. Finally, we extend the Cramér–Rao inequality to the class of 2-integrable C^k -diffeological statistical models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC18-01953J" target="_blank" >GC18-01953J: Geometrické metody ve statistické teorie učení a aplikace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    167

  • Kód UT WoS článku

    000519234000022

  • EID výsledku v databázi Scopus

    2-s2.0-85080125263