Online algorithms for multilevel aggregation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522116" target="_blank" >RIV/67985840:_____/20:00522116 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/20:10412570
Výsledek na webu
<a href="https://doi.org/10.1287/opre.2019.1847" target="_blank" >https://doi.org/10.1287/opre.2019.1847</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1287/opre.2019.1847" target="_blank" >10.1287/opre.2019.1847</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online algorithms for multilevel aggregation
Popis výsledku v původním jazyce
In the multilevel aggregation problem (MLAP), requests arrive at the nodes of an edge-weighted tree J and have to be served eventually. A service is defined as a subtree X of J that contains the root of J. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subbees. MLAP is a generalization of some well-studied optimization problems, for example, for trees of depth 1, MLAP is equivalent to the Transmission Control Protocol acknowledgment problem, whereas for trees of depth 2, it is equivalent to the joint replenishment problem. Aggregation problems for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and supply chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant-competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant-competitive online algorithm for trees of arbitrary (fixed) depth. The competitive ratio is O(D(4)2(D)), where D is the depth of J. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines.
Název v anglickém jazyce
Online algorithms for multilevel aggregation
Popis výsledku anglicky
In the multilevel aggregation problem (MLAP), requests arrive at the nodes of an edge-weighted tree J and have to be served eventually. A service is defined as a subtree X of J that contains the root of J. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subbees. MLAP is a generalization of some well-studied optimization problems, for example, for trees of depth 1, MLAP is equivalent to the Transmission Control Protocol acknowledgment problem, whereas for trees of depth 2, it is equivalent to the joint replenishment problem. Aggregation problems for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and supply chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant-competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant-competitive online algorithm for trees of arbitrary (fixed) depth. The competitive ratio is O(D(4)2(D)), where D is the depth of J. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09142S" target="_blank" >GA17-09142S: Moderní algoritmy: Nové výzvy komplexních dat</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Operations Research
ISSN
0030-364X
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
214-232
Kód UT WoS článku
000509473400012
EID výsledku v databázi Scopus
2-s2.0-85084941156