Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Online algorithms for multilevel aggregation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522116" target="_blank" >RIV/67985840:_____/20:00522116 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/20:10412570

  • Výsledek na webu

    <a href="https://doi.org/10.1287/opre.2019.1847" target="_blank" >https://doi.org/10.1287/opre.2019.1847</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1287/opre.2019.1847" target="_blank" >10.1287/opre.2019.1847</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Online algorithms for multilevel aggregation

  • Popis výsledku v původním jazyce

    In the multilevel aggregation problem (MLAP), requests arrive at the nodes of an edge-weighted tree J and have to be served eventually. A service is defined as a subtree X of J that contains the root of J. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subbees. MLAP is a generalization of some well-studied optimization problems, for example, for trees of depth 1, MLAP is equivalent to the Transmission Control Protocol acknowledgment problem, whereas for trees of depth 2, it is equivalent to the joint replenishment problem. Aggregation problems for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and supply chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant-competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant-competitive online algorithm for trees of arbitrary (fixed) depth. The competitive ratio is O(D(4)2(D)), where D is the depth of J. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines.

  • Název v anglickém jazyce

    Online algorithms for multilevel aggregation

  • Popis výsledku anglicky

    In the multilevel aggregation problem (MLAP), requests arrive at the nodes of an edge-weighted tree J and have to be served eventually. A service is defined as a subtree X of J that contains the root of J. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subbees. MLAP is a generalization of some well-studied optimization problems, for example, for trees of depth 1, MLAP is equivalent to the Transmission Control Protocol acknowledgment problem, whereas for trees of depth 2, it is equivalent to the joint replenishment problem. Aggregation problems for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and supply chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant-competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant-competitive online algorithm for trees of arbitrary (fixed) depth. The competitive ratio is O(D(4)2(D)), where D is the depth of J. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-09142S" target="_blank" >GA17-09142S: Moderní algoritmy: Nové výzvy komplexních dat</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Operations Research

  • ISSN

    0030-364X

  • e-ISSN

  • Svazek periodika

    68

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    214-232

  • Kód UT WoS článku

    000509473400012

  • EID výsledku v databázi Scopus

    2-s2.0-85084941156