New results on multi-level aggregation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00540790" target="_blank" >RIV/67985840:_____/21:00540790 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10431447
Výsledek na webu
<a href="https://doi.org/10.1016/j.tcs.2021.02.016" target="_blank" >https://doi.org/10.1016/j.tcs.2021.02.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2021.02.016" target="_blank" >10.1016/j.tcs.2021.02.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New results on multi-level aggregation
Popis výsledku v původním jazyce
In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.
Název v anglickém jazyce
New results on multi-level aggregation
Popis výsledku anglicky
In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Svazek periodika
861
Číslo periodika v rámci svazku
March 12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
133-143
Kód UT WoS článku
000621869300009
EID výsledku v databázi Scopus
2-s2.0-85101328071