Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

New results on multi-level aggregation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00540790" target="_blank" >RIV/67985840:_____/21:00540790 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/21:10431447

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.tcs.2021.02.016" target="_blank" >https://doi.org/10.1016/j.tcs.2021.02.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2021.02.016" target="_blank" >10.1016/j.tcs.2021.02.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    New results on multi-level aggregation

  • Popis výsledku v původním jazyce

    In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.

  • Název v anglickém jazyce

    New results on multi-level aggregation

  • Popis výsledku anglicky

    In the Multi-Level Aggregation Problem (MLAP ), requests for service arrive at the nodes of an edge-weighted rooted tree T. Each service is represented by a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP: (1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We complement this with a matching upper bound for the deadline variant of MLAP on paths. Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline MLAP with deadlines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

    1879-2294

  • Svazek periodika

    861

  • Číslo periodika v rámci svazku

    March 12

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    133-143

  • Kód UT WoS článku

    000621869300009

  • EID výsledku v databázi Scopus

    2-s2.0-85101328071