Cops-Robber games and the resolution of Tseitin formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523857" target="_blank" >RIV/67985840:_____/20:00523857 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3378667" target="_blank" >https://doi.org/10.1145/3378667</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3378667" target="_blank" >10.1145/3378667</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cops-Robber games and the resolution of Tseitin formulas
Popis výsledku v původním jazyce
We characterize several complexity measures for the resolution of Tseitin formulas in terms of a two person cop-robber game. Our game is a slight variation of the one Seymour and Thomas used in order to characterize the tree-width parameter. For any undirected graph, by counting the number of cops needed in our game in order to catch a robber in it, we are able to exactly characterize the width, variable space, and depth measures for the resolution of the Tseitin formula corresponding to that graph. We also give an exact game characterization of resolution variable space for any formula.nWe show that our game can be played in a monotone way. This implies that the associated resolution measures on Tseitin formulas correspond exactly to those under the restriction of Davis-Putnam resolution, implying that this kind of resolution is optimal on Tseitin formulas for all the considered measures.nUsing our characterizations, we improve the existing complexity bounds for Tseitin formulas showing that resolution width, depth, and variable space coincide up to a logarithmic factor, and that variable space is bounded by the clause space times a logarithmic factor.n
Název v anglickém jazyce
Cops-Robber games and the resolution of Tseitin formulas
Popis výsledku anglicky
We characterize several complexity measures for the resolution of Tseitin formulas in terms of a two person cop-robber game. Our game is a slight variation of the one Seymour and Thomas used in order to characterize the tree-width parameter. For any undirected graph, by counting the number of cops needed in our game in order to catch a robber in it, we are able to exactly characterize the width, variable space, and depth measures for the resolution of the Tseitin formula corresponding to that graph. We also give an exact game characterization of resolution variable space for any formula.nWe show that our game can be played in a monotone way. This implies that the associated resolution measures on Tseitin formulas correspond exactly to those under the restriction of Davis-Putnam resolution, implying that this kind of resolution is optimal on Tseitin formulas for all the considered measures.nUsing our characterizations, we improve the existing complexity bounds for Tseitin formulas showing that resolution width, depth, and variable space coincide up to a logarithmic factor, and that variable space is bounded by the clause space times a logarithmic factor.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computation Theory
ISSN
1942-3454
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
9
Kód UT WoS článku
000583676000002
EID výsledku v databázi Scopus
2-s2.0-85085257046