Dissipative measure valued solutions for general conservation laws
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524147" target="_blank" >RIV/67985840:_____/20:00524147 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.anihpc.2019.11.001" target="_blank" >https://doi.org/10.1016/j.anihpc.2019.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anihpc.2019.11.001" target="_blank" >10.1016/j.anihpc.2019.11.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dissipative measure valued solutions for general conservation laws
Popis výsledku v původním jazyce
In the last years measure-valued solutions started to be considered as a relevant notion of solutions if they satisfy the so-called measure-valued – strong uniqueness principle. This means that they coincide with a strong solution emanating from the same initial data if this strong solution exists. This property has been examined for many systems of mathematical physics, including incompressible and compressible Euler system, compressible Navier-Stokes system et al. and there are also some results concerning general hyperbolic systems. Our goal is to provide a unified framework for general systems, that would cover the most interesting cases of systems, and most importantly, we give examples of equations, for which the aspect of measure-valued – strong uniqueness has not been considered before, like incompressible magnetohydrodynamics and shallow water magnetohydrodynamics.
Název v anglickém jazyce
Dissipative measure valued solutions for general conservation laws
Popis výsledku anglicky
In the last years measure-valued solutions started to be considered as a relevant notion of solutions if they satisfy the so-called measure-valued – strong uniqueness principle. This means that they coincide with a strong solution emanating from the same initial data if this strong solution exists. This property has been examined for many systems of mathematical physics, including incompressible and compressible Euler system, compressible Navier-Stokes system et al. and there are also some results concerning general hyperbolic systems. Our goal is to provide a unified framework for general systems, that would cover the most interesting cases of systems, and most importantly, we give examples of equations, for which the aspect of measure-valued – strong uniqueness has not been considered before, like incompressible magnetohydrodynamics and shallow water magnetohydrodynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales de l'Institut Henri Poincaré. Analyse non Linéaire
ISSN
0294-1449
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
683-707
Kód UT WoS článku
000531049800008
EID výsledku v databázi Scopus
2-s2.0-85084182151