Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Almost all trees are almost graceful

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524449" target="_blank" >RIV/67985840:_____/20:00524449 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/rsa.20906" target="_blank" >https://doi.org/10.1002/rsa.20906</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20906" target="_blank" >10.1002/rsa.20906</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Almost all trees are almost graceful

  • Popis výsledku v původním jazyce

    The Graceful Tree Conjecture of Rosa from 1967 asserts that the vertices of each tree T of order n can be injectively labeled by using the numbers {1,2,…,n} in such a way that the absolute differences induced on the edges are pairwise distinct. We prove the following relaxation of the conjecture for each γ>0 and for all n>n0(γ). Suppose that (i) the maximum degree of T is bounded by Oγ????(n∕log n), and (ii) the vertex labels are chosen from the set {1,2,…,⌈(1+γ)n⌉}. Then there is an injective labeling of V(T) such that the absolute differences on the edges are pairwise distinct. In particular, asymptotically almost all trees on n vertices admit such a labeling. The proof proceeds by showing that a certain very natural randomized algorithm produces a desired labeling with high probability.

  • Název v anglickém jazyce

    Almost all trees are almost graceful

  • Popis výsledku anglicky

    The Graceful Tree Conjecture of Rosa from 1967 asserts that the vertices of each tree T of order n can be injectively labeled by using the numbers {1,2,…,n} in such a way that the absolute differences induced on the edges are pairwise distinct. We prove the following relaxation of the conjecture for each γ>0 and for all n>n0(γ). Suppose that (i) the maximum degree of T is bounded by Oγ????(n∕log n), and (ii) the vertex labels are chosen from the set {1,2,…,⌈(1+γ)n⌉}. Then there is an injective labeling of V(T) such that the absolute differences on the edges are pairwise distinct. In particular, asymptotically almost all trees on n vertices admit such a labeling. The proof proceeds by showing that a certain very natural randomized algorithm produces a desired labeling with high probability.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    40

  • Strana od-do

    948-987

  • Kód UT WoS článku

    000514232400001

  • EID výsledku v databázi Scopus

    2-s2.0-85079856601