Connection and curvature on bundles of Bergman and Hardy spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524631" target="_blank" >RIV/67985840:_____/20:00524631 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.25537/dm.2020v25.189-217" target="_blank" >http://dx.doi.org/10.25537/dm.2020v25.189-217</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25537/dm.2020v25.189-217" target="_blank" >10.25537/dm.2020v25.189-217</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Connection and curvature on bundles of Bergman and Hardy spaces
Popis výsledku v původním jazyce
We consider a complex domain D×V in the space Cm×Cn and a family of weighted Bergman spaces on V defined by a weight e-kϕ(z,w) for a pluri-subharmonic function ϕ(z,w) with a quantization parameter k. The weighted Bergman spaces define an infinite dimensional Hermitian vector bundle over the domain D. We consider the natural covariant differentiation ∇Z on the sections, namely the unitary Chern connections preserving the Bergman norm. We prove a Dixmier trace formula for the curvature of the unitary connection and we find the asymptotic expansion for the curvatures R(k) (Z,Z) for large k and for the induced connection [∇(k)Z,T(k)f] on Toeplitz operators Tf. In the special case when the domain D is the Siegel domain and the weighted Bergman spaces are the Fock spaces we find the exact formula for [∇(k)Z,T(k)f] as Toeplitz operators. This generalizes earlier work of J. E. Andersen in [Commun. Math. Phys. 255, No. 3, 727--745]. Finally, we also determine the formulas for the curvature and for the induced connection in the general case of D×V replaced by a general strictly pseudoconvex domain V⊂Cm×Cn fibered over a domain D⊂Cm. The case when the Bergman space is replaced by the Hardy space on the boundary of the domain is likewise discussed.
Název v anglickém jazyce
Connection and curvature on bundles of Bergman and Hardy spaces
Popis výsledku anglicky
We consider a complex domain D×V in the space Cm×Cn and a family of weighted Bergman spaces on V defined by a weight e-kϕ(z,w) for a pluri-subharmonic function ϕ(z,w) with a quantization parameter k. The weighted Bergman spaces define an infinite dimensional Hermitian vector bundle over the domain D. We consider the natural covariant differentiation ∇Z on the sections, namely the unitary Chern connections preserving the Bergman norm. We prove a Dixmier trace formula for the curvature of the unitary connection and we find the asymptotic expansion for the curvatures R(k) (Z,Z) for large k and for the induced connection [∇(k)Z,T(k)f] on Toeplitz operators Tf. In the special case when the domain D is the Siegel domain and the weighted Bergman spaces are the Fock spaces we find the exact formula for [∇(k)Z,T(k)f] as Toeplitz operators. This generalizes earlier work of J. E. Andersen in [Commun. Math. Phys. 255, No. 3, 727--745]. Finally, we also determine the formulas for the curvature and for the induced connection in the general case of D×V replaced by a general strictly pseudoconvex domain V⊂Cm×Cn fibered over a domain D⊂Cm. The case when the Bergman space is replaced by the Hardy space on the boundary of the domain is likewise discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Documenta Mathematica
ISSN
1431-0643
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
29
Strana od-do
189-217
Kód UT WoS článku
000592702600007
EID výsledku v databázi Scopus
2-s2.0-85103664228