On countably saturated linear orders and certain class of countably saturated graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00537538" target="_blank" >RIV/67985840:_____/21:00537538 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00153-020-00742-7" target="_blank" >https://doi.org/10.1007/s00153-020-00742-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-020-00742-7" target="_blank" >10.1007/s00153-020-00742-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On countably saturated linear orders and certain class of countably saturated graphs
Popis výsledku v původním jazyce
The idea of this paper is to explore the existence of canonical countably saturated models for different classes of structures. It is well-known that, under CH, there exists a unique countably saturated linear order of cardinality c. We provide some examples of pairwise non-isomorphic countably saturated linear orders of cardinality c, under different set-theoretic assumptions. We give a new proof of the old theorem of Harzheim, that the class of countably saturated linear orders has a uniquely determined one-element basis. From our proof it follows that this minimal linear order is a Fraïssé limit of certain Fraïssé class. In particular, it is homogeneous with respect to countable subsets. Next we prove the existence and uniqueness of the uncountable version of the random graph. This graph is isomorphic to (H(ω1) , ∈ ∪ ∋) , where H(ω1) is the set of hereditarily countable sets, and two sets are connected if one of them is an element of the other. In the last section, an example of a prime countably saturated Boolean algebra is presented.
Název v anglickém jazyce
On countably saturated linear orders and certain class of countably saturated graphs
Popis výsledku anglicky
The idea of this paper is to explore the existence of canonical countably saturated models for different classes of structures. It is well-known that, under CH, there exists a unique countably saturated linear order of cardinality c. We provide some examples of pairwise non-isomorphic countably saturated linear orders of cardinality c, under different set-theoretic assumptions. We give a new proof of the old theorem of Harzheim, that the class of countably saturated linear orders has a uniquely determined one-element basis. From our proof it follows that this minimal linear order is a Fraïssé limit of certain Fraïssé class. In particular, it is homogeneous with respect to countable subsets. Next we prove the existence and uniqueness of the uncountable version of the random graph. This graph is isomorphic to (H(ω1) , ∈ ∪ ∋) , where H(ω1) is the set of hereditarily countable sets, and two sets are connected if one of them is an element of the other. In the last section, an example of a prime countably saturated Boolean algebra is presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
1432-0665
Svazek periodika
60
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
189-209
Kód UT WoS článku
000545545900001
EID výsledku v databázi Scopus
2-s2.0-85087498461