Ergodic theory for energetically open compressible fluid flows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542582" target="_blank" >RIV/67985840:_____/21:00542582 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.physd.2021.132914" target="_blank" >https://doi.org/10.1016/j.physd.2021.132914</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2021.132914" target="_blank" >10.1016/j.physd.2021.132914</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ergodic theory for energetically open compressible fluid flows
Popis výsledku v původním jazyce
The ergodic hypothesis is examined for energetically open fluid systems represented by the barotropic Navier–Stokes equations with general inflow/outflow boundary conditions. We show that any globally bounded trajectory generates a stationary statistical solution, which is interpreted as a stochastic process with continuous trajectories supported by the family of weak solutions of the problem. The abstract Birkhoff–Khinchin theorem is applied to obtain convergence (in expectation and a.s.) of ergodic averages for any bounded Borel measurable function of state variables associated to any stationary solution. Finally, we show that validity of the ergodic hypothesis is determined by the behavior of entire solutions (i.e. a solution defined for any t∈R). In particular, the ergodic averages converge for any trajectory provided its ω-limit set in the trajectory space supports a unique (in law) stationary solution.
Název v anglickém jazyce
Ergodic theory for energetically open compressible fluid flows
Popis výsledku anglicky
The ergodic hypothesis is examined for energetically open fluid systems represented by the barotropic Navier–Stokes equations with general inflow/outflow boundary conditions. We show that any globally bounded trajectory generates a stationary statistical solution, which is interpreted as a stochastic process with continuous trajectories supported by the family of weak solutions of the problem. The abstract Birkhoff–Khinchin theorem is applied to obtain convergence (in expectation and a.s.) of ergodic averages for any bounded Borel measurable function of state variables associated to any stationary solution. Finally, we show that validity of the ergodic hypothesis is determined by the behavior of entire solutions (i.e. a solution defined for any t∈R). In particular, the ergodic averages converge for any trajectory provided its ω-limit set in the trajectory space supports a unique (in law) stationary solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05974S" target="_blank" >GA18-05974S: Oscilace a koncentrace proti stabilitě v rovnicích pohybu tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica. D
ISSN
0167-2789
e-ISSN
1872-8022
Svazek periodika
423
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
132914
Kód UT WoS článku
000661734700006
EID výsledku v databázi Scopus
2-s2.0-85105699010