Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ergodic theory for energetically open compressible fluid flows

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542582" target="_blank" >RIV/67985840:_____/21:00542582 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.physd.2021.132914" target="_blank" >https://doi.org/10.1016/j.physd.2021.132914</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physd.2021.132914" target="_blank" >10.1016/j.physd.2021.132914</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ergodic theory for energetically open compressible fluid flows

  • Popis výsledku v původním jazyce

    The ergodic hypothesis is examined for energetically open fluid systems represented by the barotropic Navier–Stokes equations with general inflow/outflow boundary conditions. We show that any globally bounded trajectory generates a stationary statistical solution, which is interpreted as a stochastic process with continuous trajectories supported by the family of weak solutions of the problem. The abstract Birkhoff–Khinchin theorem is applied to obtain convergence (in expectation and a.s.) of ergodic averages for any bounded Borel measurable function of state variables associated to any stationary solution. Finally, we show that validity of the ergodic hypothesis is determined by the behavior of entire solutions (i.e. a solution defined for any t∈R). In particular, the ergodic averages converge for any trajectory provided its ω-limit set in the trajectory space supports a unique (in law) stationary solution.

  • Název v anglickém jazyce

    Ergodic theory for energetically open compressible fluid flows

  • Popis výsledku anglicky

    The ergodic hypothesis is examined for energetically open fluid systems represented by the barotropic Navier–Stokes equations with general inflow/outflow boundary conditions. We show that any globally bounded trajectory generates a stationary statistical solution, which is interpreted as a stochastic process with continuous trajectories supported by the family of weak solutions of the problem. The abstract Birkhoff–Khinchin theorem is applied to obtain convergence (in expectation and a.s.) of ergodic averages for any bounded Borel measurable function of state variables associated to any stationary solution. Finally, we show that validity of the ergodic hypothesis is determined by the behavior of entire solutions (i.e. a solution defined for any t∈R). In particular, the ergodic averages converge for any trajectory provided its ω-limit set in the trajectory space supports a unique (in law) stationary solution.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-05974S" target="_blank" >GA18-05974S: Oscilace a koncentrace proti stabilitě v rovnicích pohybu tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physica. D

  • ISSN

    0167-2789

  • e-ISSN

    1872-8022

  • Svazek periodika

    423

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    25

  • Strana od-do

    132914

  • Kód UT WoS článku

    000661734700006

  • EID výsledku v databázi Scopus

    2-s2.0-85105699010